17 research outputs found

    Analyse des SEPIC-Spannungswandlers für Automotive-Anwendungen

    Get PDF
    Die Spannungsversorgung elektronischer Steuergeräte im Automotive-Bereich wird zunehmend durch Schaltregler sichergestellt. Der SEPIC (Single Ended Primary Inductance Converter) besitzt die Eigenschaft, eine Spannung aufwärts wie auch abwärts wandeln zu können und könnte somit klassische Buck- und Boost-Wandler ablösen. Dieser Beitrag untersucht den SEPIC hinsichtlich Eignung für Automotive-Anwendungen. Dazu wurde eine Groß- sowie Kleinsignalanalyse am Wandler durchgeführt, mit geeigneten Simulationsmodellen nachgebildet und Messungen gegenüber gestellt. Der SEPIC zeigt als Hauptvorteile: 1. einen verzugsfreien Übergang zwischen Buck-/Boost Betrieb, 2. geringe Eingangswelligkeit, 3.DC-Kurzschlussfestigkeit. Auch hinsichtlich Wirkungsgrad und EMV-Verhalten stellt der SEPIC eine interessante Alternative dar. Der zwischen Ein- und Ausgang liegende Kondensator wird dauerhaft von einem Strom durchflossen, auf Basis der Effektivströme wird das damit verbundene Ausfallrisiko diskutiert

    A 50V high-speed level shifter with high dv/dt immunity for multi-MHz DCDC converters

    No full text
    Size and cost of a switched mode power supply can be reduced by increasing the switching frequency. The maximum switching frequency and the maximum input voltage range, respectively, is limited by the minimum propagated on-time pulse, which is mainly determined by the level shifter speed. At switching frequencies above 10 MHz, a voltage conversion with an input voltage range up to 50 V and output voltages below 5 V requires an on-time of a pulse width modulated signal of less than 5 ns. This cannot be achieved with conventional level shifters. This paper presents a level shifter circuit, which controls an NMOS power FET on a high-voltage domain up to 50 V. The level shifter was implemented as part of a DCDC converter in a 180 nm BiCMOS technology. Experimental results confirm a propagation delay of 5 ns and on-time pulses of less than 3 ns. An overlapping clamping structure with low parasitic capacitances in combination with a high-speed comparator makes the level shifter also very robust against large coupling currents during high-side transitions as fast as 20 V/ns, verified by measurements. Due to the high dv/dt, capacitive coupling currents can be two orders of magnitude larger than the actual signal current. Depending on the conversion ratio, the presented level shifter enables an increase of the switching frequency for multi-MHz converters towards 100 MHz. It supports high input voltages up to 50 V and it can be applied also to other high-speed applications

    A 12V 10MHz buck converter with dead time control based on a 125 ps differential delay chain

    No full text
    This paper presents an integrated synchronous buck converter for input voltages >12V with 10MHz switching frequency. The converter comprises a predictive dead time control with frequency compensated sampling of the switching node which does not require body diode forward conduction. A high dead time resolution of 125 ps is achieved by a differential delay chain with 8-bit resolution. This way, the efficiency of fast switching DCDC converters can be optimized by eliminating the body diode forward conduction losses, minimizing reverse recovery losses and by achieving zero voltage switching at turn off. The converter was implemented in a 180nm high-voltage BiCMOS technology. The power losses were measured to be reduced by 30%by the proposed dead time control, which results in a 6% efficiency increase at VOUT = 5V and 0.2A load. The peak efficiency is 81 %

    A 10 MHz, 48-to-5V synchronous converter with dead time enabled 125 ps resolution zero-voltage switching

    No full text
    An integrated synchronous buck converter with a high resolution dead time control for input voltages up to 48V and 10MHz switching frequency is presented. The benefit of an enhanced dead time control at light loads to enable zero voltage switching at both the high-side and low-side switch at low output load is studied. This way, compact multi-MHz DCDC converters can be implemented at high efficiency over a wide load current range. The concept also eliminates body diode forward conduction losses and minimizes reverse recovery losses. A dead time resolution of 125 ps is realized by an 8-bit differential delay chain. A further efficiency enhancement by soft switching at the high-side switch at light load is achieved with a voltage boost of the switching node by dead time control in forced continuous conduction mode. The monolithic converter is implemented in an 180nm high-voltage BiCMOS technology. At V IN = 48V, V OUT = 5V, 50mA load, 10MHz switching frequency and 500 nH output inductance, the efficiency is measured to be increased by 14.4% compared to a conventional predictive dead time control. A peak efficiency of 80.9% is achieved at 12V input

    An 18 V input 10 MHz Buck converter with 125 ps mixed-signal dead time control

    No full text
    A highly integrated synchronous buck converter with a predictive dead time control for input voltages >18 V with 10 MHz switching frequency is presented. A high resolution dead time of ˜125 ps allows to reduce dead time dependent losses without requiring body diode conduction to evaluate the dead time. High resolution is achieved by frequency compensated sampling of the switching node and by an 8 bit differential delay chain. Dead time parameters are derived in a comprehensive study of dead time depended losses. This way, the efficiency of fast switching DC-DC converters can be optimized by eliminating the body diode forward conduction losses, minimizing reverse recovery losses and by achieving zero voltage switching. High-speed circuit blocks for fast switching operation are presented including level shifter, gate driver, PWM generator. The converter has been implemented in a 180 nm high-voltage BiCMOS technology

    A 12-48V wide-vin 9-15MHz soft-switching controlled resonant DCDC converter

    No full text
    The presented wide-Vin step-down converter introduces a parallel-resonant converter (PRC), comprising an integrated 5-bit capacitor array and a 300 nH resonant coil, placed in parallel to a conventional buck converter. Unlike conventional resonant concepts, the implemented soft-switching control eliminates input voltage dependent losses over a wide operating range. This ensures high efficiency across a wide range of Vin= 12-48V, 100-500mA load and 5V output at up to 15MHz switching frequency. The peak efficiency of the converter is 76.3 %. Thanks to the low output current ripple, the output capacitor can be as small as 50 nF, while the inductor tolerates a larger ESR, resulting in small component size. The proposed PRC architecture is also suitable for future power electronics applications using fast-switching GaN devices

    Optimierte, wiederverwendbare OTA-Schaltungen für moderne Power BiCMOS-Technologien

    Get PDF
    Es wird das Ziel verfolgt, eine Möglichkeit für die sichere Wiederverwendbarkeit von Schaltungen aus der OTA-Schaltungsklasse bereitzustellen. Hierfür werden ausgewählte OTA-Schaltungstopologien für die "Copy-and-Paste"-Methode vorgestellt. Es wurde im industriellen Umfeld gezeigt, dass sie sich unter der Voraussetzung einer repräsentativen Topologieauswahl – vordimensioniert für den typischen Anwendungsbereich – schon in dieser Form für die Wiederverwendung eignen

    Pegelumsetzer und Verfahren zur Pegelumsetzung

    No full text
    Pegelumsetzer mit einem ersten Eingang, der ein erstes Signal erfasst, wobei das erste Signal einen ersten Spannungspegel aufweist, einem Ausgang, der ein zweites Signal erzeugt, wobei das zweite Signal einen zweiten Spannungspegel aufweist, wobei der zweite Spannungspegel größer als der erste Spannungspegel ist und einem Differenzverstärker, der eine Differenzspannung erfasst, wobei der Differenzverstärker mit einer Versorgungsspannung und einer hochseitige Masse verbunden ist, wobei die Versorgungsspannung ein erstes Spannungspotential und die hochseitige Masse ein zweites Spannungspotential aufweist, dadurch gekennzeichnet, dass der erste Eingang mit einer ersten Teilschaltung verbunden ist, wobei die erste Teilschaltung mit einer zweiten Teilschaltung unidirektional verbunden ist, wobei die zweite Teilschaltung mit der Versorgungsspannung und der hochseitigen Masse verbunden ist, wobei die zweite Teilschaltung mindestens zwei Ausgänge aufweist, die die Differenzspannung des Differenzverstärkers erzeugen, wobei über einen Versorgungsspannungseingang und einen hochseitigen Masseeingang eine zusätzliche Spannung einkoppelt und der Differenzverstärker das zweite Signal in Abhängigkeit der Differenzspannung, der Versorgungsspannung, der hochseitigen Masse und der zusätzlichen Spannung erzeugt

    A 20 V, 8 MHz resonant DCDC converter with predictive control for 1 ns resolution soft-switching

    No full text
    Fast switching power supplies allow to reduce the size and cost of external passive components. However, the capacitive switching losses of the power stage will increase and become the dominant part of the total losses. Therefore, resonant topologies are the known key to reduce the losses of the power stage. A power switch with an additional resonant circuit can be turned on under soft-switching conditions, ideally with zero-voltage-switching (ZVS). As conventional resonant converts are only efficient for a constant load, this paper presents a predictive regulation loop to approach soft-switching conditions under varying load and component tolerances. A sample and hold based detection circuit is utilized to control the turn-on of the power switch by a digital regulation. The proposed design was fabricated in a 180 nm high-voltage BiCMOS technology. The efficiency of the converter was measured to be increased by up to 16 % vs. worst case timing and by 13 % compared to a conventional hard-switching buck converter at 20 V input voltage and at approximately 8 MHz switching frequency
    corecore