855 research outputs found
Continuous feedback on a quantum gas coupled to an optical cavity
We present an active feedback scheme acting continuously on the state of a
quantum gas dispersively coupled to a high-finesse optical cavity. The quantum
gas is subject to a transverse pump laser field inducing a self-organization
phase transition, where the gas acquires a density modulation and photons are
scattered into the resonator. Photons leaking from the cavity allow for a
real-time and non-destructive readout of the system. We stabilize the mean
intra-cavity photon number through a micro-processor controlled feedback
architecture acting on the intensity of the transverse pump field. The feedback
scheme can keep the mean intra-cavity photon number constant, in
a range between and , and
for up to 4 s. Thus we can engage the stabilization in a regime where the
system is very close to criticality as well as deep in the self-organized
phase. The presented scheme allows us to approach the self-organization phase
transition in a highly controlled manner and is a first step on the path
towards the realization of many-body phases driven by tailored feedback
mechanisms
Fast degenerate double proton transfer in the solid state between two indazolinone tautomers
The neutral dimer formed by 4,6-difluoro-1H,2H-indazolin-3-one and 3-hydroxy-4,6-difluoro-1H-indazole linked by two hydrogen bonds presents a very fast intermolecular double proton transfer in the solid state (ISSPT). The combined use of crystallography, solid state NMR and DFT [B3LYP/6-311++G(d,p)] calculations supports this interesting observation and allows us to estimate a barrier of about 20 kJ mol-1. © 2010 The Royal Society of Chemistry.Peer Reviewe
Star formation along the Hubble sequence Radial structure of the star formation of CALIFA galaxies
González Delgado, Rosa M. et. al.The spatially resolved stellar population content of today's galaxies holds important information for understanding the different processes that contribute to the star formation and mass assembly histories of galaxies. The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by a uniquely rich and diverse data set drawn from the CALIFA survey. The sample under study contains 416 galaxies observed with integral field spectroscopy, covering a wide range of Hubble types and stellar masses ranging from M* similar to 10(9) to 7 x 10(11) M-circle dot. Spectral synthesis techniques are applied to the datacubes to derive 2D maps and radial profiles of the intensity of the star formation rate in the recent past (Sigma(SFR)), as well as related properties, such as the local specific star formation rate (sSFR), defined as the ratio between Sigma(SFR) and the stellar mass surface density (mu*). To emphasize the behavior of these properties for galaxies that are on and off the main sequence of star formation (MSSF), we stack the individual radial profiles in seven bins of galaxy morphology ( E, S0, Sa, Sb, Sbc, Sc, and Sd), and several stellar masses. Our main results are: ( a) the intensity of the star formation rate shows declining profiles that exhibit very small differences between spirals with values at R = 1 half light radius (HLR) within a factor two of Sigma(SFR) similar to 20 M-circle dot Gyr(-1) pc(-2). The dispersion in the Sigma(SFR)(R) profiles is significantly smaller in late type spirals (Sbc, Sc, Sd). This confirms that the MSSF is a sequence of galaxies with nearly constant Sigma(SFR). (b) sSFR values scale with Hubble type and increase radially outward with a steeper slope in the inner 1 HLR. This behavior suggests that galaxies are quenched inside-out and that this process is faster in the central, bulge-dominated part than in the disks. (c) As a whole and at all radii, E and S0 are off the MSSF with SFR much smaller than spirals of the same mass. (d) Applying the volume corrections for the CALIFA sample, we obtain a density of star formation in the local Universe of rho SFR = (0.0105 +/- 0.0008) M-circle dot yr(-1) Mpc(-3), in agreement with independent estimates. Most of the star formation is occurring in the disks of spirals. (e) The volume-averaged birthrate parameter, which measures the current SFR with respect to its lifetime average, b' = 0.39 +/- 0.03, suggests that the present day Universe is forming stars a about one-third of its past average rate. E, S0, and the bulge of early type spirals (Sa, Sb) contribute little to the recent SFR of the Universe, which is dominated by the disks of Sbc, Sc, and Sd spirals. (f) There is a tight relation between Sigma(SFR) and mu*, defining a local MSSF relation with a logarithmic slope of 0.8, similar to the global MSSF relation between SFR and M*. This suggests that local processes are important in determining the star formation in disks, probably through a density dependence of the SFR law. The scatter in the local MSSF is driven by morphology-related off sets, with Sigma(SFR)/mu* (the local sSFR) increasing from early to late type galaxies, indicating that the shut down of the star formation is more related to global processes, such as the formation of a spheroidal component.Support from the Spanish Ministerio de Economia y Competitividad, through projects AYA2014-57490-P, AYA2010-15081, and Junta de Andalucia FQ1580, AYA2010-22111-C03-03, AYA2010-10904E, AYA2013-42227P, RyC-2011-09461, AYA2013-47742-C4-3-P, EU SELGIFS exchange program FP7-PEOPLE-2013-IRSES-612701, and CONACYT-125180 and DGAPA-IA100815. We also thank the Viabilidad, Diseno, Acceso y Mejora funding program, ICTS-2009-10, for funding the data acquisition of this project.Peer reviewe
Outer-disk reddening and gas-phase metallicities: The CALIFA connection
Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC ).CALIFA Team: et al.We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. Sloan Digital Sky Survey (SDSS) g′- and r′-band surface brightness, (g′ - r′) color, and ionized-gas oxygen abundance profiles for 324 galaxies within the Calar Alto Legacy Integral Field Area (CALIFA) survey are used for this purpose. We perform a detailed light-profile classification, finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively), while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g′ - r′) color of ∼ 0.5mag and an ionized-gas metallicity flattening associated with it only in the case of low-mass galaxies. Comparatively, more massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass for these systems results in p-values as low as 0.01. Independent of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses ≤10 M′ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass downsizing effect on the population of Type III galaxies that recently experienced an enhanced inside-out growth.R. A. Marino is funded by the Spanish program of International Campus of Excellence Moncloa (CEI).We acknowledge support from the Plan Nacional de Investigación y Desarrollo funding programs, AyA2010-15081, AyA2012-30717 and AyA2013-46724P, of Spanish Ministerio de Economía y Competitividad (MINECO). A.G.d.P. acknowledges
the support from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement PITNGA-2011-289313.
C.C.-T. thanks the support of the Spanish Ministerio de Educación, Cultura y Deporte by means of the FPU fellowship program. C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC 120009, awarded to The Millennium Institute of Astrophysics, MAS. L.G. acknowledges support by CONICYT through FONDECYT grant 3140566. S.F.S. thanks the CONACYT-125180 and DGAPA-IA100815 projects for providing him support in this study. J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). P.P. is supported by FCT through the Investigador FCT Contract No. IF/01220/2013 and POPH/FSE (EC) by FEDER funding through the program COMPETE. He also acknowledges support by FCT under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FISAST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE).Peer Reviewe
- …