2 research outputs found

    Effect of Functionalized Carbon Nanotubes and their Citric Acid Polymerization on Mesenchymal Stem Cells In Vitro

    No full text
    The effects of acid-functionalized and polycitric acid- (PCA-) polymerized carbon nanotubes (CNTs) in contact with the extracellular membrane of mesenchymal stem cells (MSC), a genetically unmodified cell line with differentiation capability, was evaluated with different cellular parameters. The modified CNTs show differences in the analyzed biological behaviors, that is, intracellular incorporation, cell proliferation, apoptosis, and cytotoxicity as compared with those unpolymerized nanotubes. Due to the reduced cellular uptake of polymerized CNTs, PCA-polymerized CNTs are less cytotoxic and are associated with less apoptotic cell death than the acid-functionalized ones. The effects of nitrogen-doped CNTs (CNx) is also reported, showing that functionalized undoped CNTs present strong stimulation of cell proliferation, whereas functionalized and polymerized CNxs stimulate an apoptotic behavior. The study of MSCs in contact with CNTs and PCA is challenging due to the complexity of its various signaling components. Our results provide basis for further studies aimed to understand the relevant role that the interaction of these nanotubes with extracellular membrane could have a crucial structure for tissue grafting
    corecore