291 research outputs found

    Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors

    Full text link
    [EN] This review includes examples of silica-based, chromo-fluorogenic nanosensors with the aim of illustrating the evolution of the discipline in recent decades through relevant research developed in our group. Examples have been grouped according to the sensing strategies. A clear evolution from simply functionalized materials to new protocols involving molecular gates and the use of highly selective biomolecules such as antibodies and oligonucleotides is reported. Some final examples related to the evolution of chromogenic arrays and the possible use of nanoparticles to communicate with other nanoparticles or cells are also included. A total of 64 articles have been summarized, highlighting different sensing mechanisms.This research was funded by the Spanish Government (projects RTI2018-100910-B-C41, RTI2018-100910-B-C44, and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (project PROMETEO/2018/024) for support. B.L.-T. is grateful to the Spanish MEC for her FPU grant. Additionally, L.P. thanks the Spanish MEC for his FPI fellowship.Pla, L.; Lozano-Torres, B.; Martínez-Máñez, R.; Sancenón Galarza, F.; Ros-Lis, JV. (2019). Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors. Sensors. 19(23):1-23. https://doi.org/10.3390/s19235138S1231923Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016Dutta, S. (2019). Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC Trends in Analytical Chemistry, 110, 393-400. doi:10.1016/j.trac.2018.11.014Huang, X., Xu, D., Chen, J., Liu, J., Li, Y., Song, J., … Guo, J. (2018). Smartphone-based analytical biosensors. The Analyst, 143(22), 5339-5351. doi:10.1039/c8an01269eYu, L., Qiao, Y., Miao, L., He, Y., & Zhou, Y. (2018). Recent progress in fluorescent and colorimetric sensors for the detection of ions and biomolecules. Chinese Chemical Letters, 29(11), 1545-1559. doi:10.1016/j.cclet.2018.09.005Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Han, W. S., Lee, H. Y., Jung, S. H., Lee, S. J., & Jung, J. H. (2009). Silica-based chromogenic and fluorogenic hybrid chemosensor materials. Chemical Society Reviews, 38(7), 1904. doi:10.1039/b818893aDescalzo, A. B., Jiménez, D., Haskouri, J. E., Beltrán, D., Amorós, P., Marcos, M. D., … Soto, J. (2002). A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41Electronic supplementary information (ESI) available: IR spectra, SEM images, X-ray diffraction patterns and TG/TD analysis. See http://www.rsc.org/suppdata/cc/b1/b111128k/. Chemical Communications, (6), 562-563. doi:10.1039/b111128kComes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497aDescalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683nRos-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632Climent, E., Biyikal, M., Gawlitza, K., Dropa, T., Urban, M., Costero, A. M., … Rurack, K. (2016). A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Chemistry - A European Journal, 22(32), 11138-11142. doi:10.1002/chem.201601269Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.201306688Climent, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199fCliment, E., Agostini, A., Moragues, M. E., Martínez‐Máñez, R., Sancenón, F., Pardo, T., & Marcos, M. D. (2013). A Simple Probe for the Colorimetric Detection of Carbon Dioxide. Chemistry – A European Journal, 19(51), 17301-17304. doi:10.1002/chem.201302991El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088Climent, E., Giménez, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2011). Selective and sensitive chromo-fluorogenic sensing of anionic surfactants in water using functionalised silica nanoparticles. Chemical Communications, 47(24), 6873. doi:10.1039/c1cc11393cColl, C., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., & Soto, J. (2007). A Simple Approach for the Selective and Sensitive Colorimetric Detection of Anionic Surfactants in Water. Angewandte Chemie International Edition, 46(10), 1675-1678. doi:10.1002/anie.200603800Calero, P., Aznar, E., Lloris, J. M., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J. V., … Sancenón, F. (2008). Chromogenic silica nanoparticles for the colorimetric sensing of long-chain carboxylates. Chemical Communications, (14), 1668. doi:10.1039/b718690hPallás, I., Marcos, M., Martínez-Máñez, R., & Ros-Lis, J. (2017). Development of a Textile Nanocomposite as Naked Eye Indicator of the Exposition to Strong Acids. Sensors, 17(9), 2134. doi:10.3390/s17092134Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396eComes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890Calero, P., Hecht, M., Martínez-Máñez, R., Sancenón, F., Soto, J., Vivancos, J. L., & Rurack, K. (2011). Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA). Chemical Communications, 47(38), 10599. doi:10.1039/c1cc13039kLi, Z., Askim, J. R., & Suslick, K. S. (2018). The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chemical Reviews, 119(1), 231-292. doi:10.1021/acs.chemrev.8b00226Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., … Lorente, I. (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. The Analyst, 137(16), 3635. doi:10.1039/c2an35211gSalinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Aucejo, S., Herranz, N., … Garcia, E. (2014). A chromogenic sensor array for boiled marinated turkey freshness monitoring. Sensors and Actuators B: Chemical, 190, 326-333. doi:10.1016/j.snb.2013.08.075Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., … Garcia, E. (2014). A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control, 35(1), 166-176. doi:10.1016/j.foodcont.2013.06.043Zaragozá, P., Ros-Lis, J. V., Vivancos, J.-L., & Martínez-Máñez, R. (2015). Proof of concept of using chromogenic arrays as a tool to identify blue cheese varieties. Food Chemistry, 172, 823-830. doi:10.1016/j.foodchem.2014.09.114Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jCasasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157kOroval, M., Coronado-Puchau, M., Langer, J., Sanz-Ortiz, M. N., Ribes, Á., Aznar, E., … Martínez-Máñez, R. (2016). Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection ofMycoplasmaand Cocaine. Chemistry - A European Journal, 22(38), 13488-13495. doi:10.1002/chem.201602457Ribes, À., Aznar, E., Bernardos, A., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Sancenón, F. (2017). Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamer-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 23(36), 8581-8584. doi:10.1002/chem.201701024Oroval, M., Coll, C., Bernardos, A., Marcos, M. D., Martínez-Máñez, R., Shchukin, D. G., & Sancenón, F. (2017). Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 9(13), 11332-11336. doi:10.1021/acsami.6b15164Ribes, À., Santiago-Felipe, S., Bernardos, A., Marcos, M. D., Pardo, T., Sancenón, F., … Aznar, E. (2017). Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen, 6(5), 653-659. doi:10.1002/open.201700106Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dCliment, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031Climent, E., Martínez-Máñez, R., Maquieira, Á., Sancenón, F., Marcos, M. D., Brun, E. M., … Amorós, P. (2012). Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride. ChemistryOpen, 1(6), 251-259. doi:10.1002/open.201100008Pascual, L., El Sayed, S., Marcos, M. D., Martínez-Máñez, R., & Sancenón, F. (2017). Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors. Chemistry - An Asian Journal, 12(7), 775-784. doi:10.1002/asia.201700031Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie, 121(45), 8671-8674. doi:10.1002/ange.200904243Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727fAlberto Juárez, L., Costero, A. M., Parra, M., Gaviña, P., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2017). NO2-controlled cargo delivery from gated silica mesoporous nanoparticles. Chemical Communications, 53(3), 585-588. doi:10.1039/c6cc08885fEl Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186jColl, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703dGodoy-Reyes, T. M., Llopis-Lorente, A., García-Fernández, A., Gaviña, P., Costero, A. M., Martínez-Máñez, R., & Sancenón, F. (2019). Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials. Chemical Communications, 55(41), 5785-5788. doi:10.1039/c9cc02602aOtri, I., El Sayed, S., Medaglia, S., Martínez‐Máñez, R., Aznar, E., & Sancenón, F. (2019). Simple Endotoxin Detection Using Polymyxin‐B‐Gated Nanoparticles. Chemistry – A European Journal, 25(15), 3770-3774. doi:10.1002/chem.201806306Ribes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083aSalinas, Y., Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez de Diego, A. (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 47(43), 11885. doi:10.1039/c1cc14877jSalinas, Y., Martínez-Máñez, R., Jeppesen, J. O., Petersen, L. H., Sancenón, F., Marcos, M. D., … Amorós, P. (2013). Tetrathiafulvalene-Capped Hybrid Materials for the Optical Detection of Explosives. ACS Applied Materials & Interfaces, 5(5), 1538-1543. doi:10.1021/am303111cSalinas, Y., Agostini, A., Pérez-Esteve, É., Martínez-Máñez, R., Sancenón, F., Dolores Marcos, M., … Amorós, P. (2013). Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A, 1(11), 3561. doi:10.1039/c3ta01438jSalinas, Y., Solano, M. V., Sørensen, R. E., Larsen, K. R., Lycoops, J., Jeppesen, J. O., … Guillem, C. (2013). Chromo-Fluorogenic Detection of Nitroaromatic Explosives by Using Silica Mesoporous Supports Gated with Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 20(3), 855-866. doi:10.1002/chem.201302461Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kLlopis‐Lorente, A., Villalonga, R., Marcos, M. D., Martínez‐Máñez, R., & Sancenón, F. (2018). A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme‐Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry – A European Journal, 25(14), 3575-3581. doi:10.1002/chem.201804706Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.20190886

    Application of mesoporous silica materials for the immobilization of polyphenol oxidase

    Full text link
    [EN] The ability of a number of mesoporous silica materials (SBA-15, SBA-3, and MCM-48) to immobilize polyphenol oxidase (PPO) at different pH has been tested. Pore size and volume are the structural characteristics with higher influence on the PPO immobilization. Mesoropous material SBA-15 adsorbs a larger quantity of PPO at pH 4.00 and offers an inhibition of enzymatic activity close the 50% in apple extracts.AEGB acknowledges support from the Swedish Research Council (Grant Number 621-2012-3375), the ARC Centre of Excellence for Nanoscale BioPhotonics (CE140100003), and an ARC Future Fellowship (FT150100342)Corell Escuin, P.; Garcia-Benett, A.; Ros-Lis, JV.; Argüelles Foix, AL.; Andrés Grau, AM. (2017). Application of mesoporous silica materials for the immobilization of polyphenol oxidase. Food Chemistry. 217:360-363. https://doi.org/10.1016/j.foodchem.2016.08.027S36036321

    Monitoring of chicken meat freshness by means of a colorimetric sensor array

    Full text link
    A new optoelectronic nose to monitor chicken meat ageing has been developed. It is based on 16 pigments prepared by the incorporation of different dyes (pH indicators, Lewis acids, hydrogenbonding derivatives, selective probes and natural dyes) into inorganic materials (UVM-7, silica and alumina). The colour changes of the sensor array were characteristic of chicken ageing in a modi¿ed packaging atmosphere (30% CO2¿70% N2). The chromogenic array data were processed with qualitative (PCA) and quantitative (PLS) tools. The PCA statistical analysis showed a high degree of dispersion, with nine dimensions required to explain 95% of variance. Despite this high dimensionality, a tridimensional representation of the three principal components was able to differentiate ageing with 2-day intervals. Moreover, the PLS statistical analysis allows the creation of a model to correlate the chromogenic data with chicken meat ageing. The model offers a PLS prediction model for ageing with values of 0.9937, 0.0389 and 0.994 for the slope, the intercept and the regression coef¿cient, respectively, and is in agreement with the perfect ¿t between the predicted and measured values observed. The results suggest the feasibility of this system to help develop optoelectronic noses that monitor food freshness.Salinas Soler, Y.; Ros-Lis, JV.; Vivancos, J.; Martínez Mañez, R.; Marcos Martínez, MD.; Aucejo Romero, S.; Herranz, N.... (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. Analyst. 137(16):3635-3643. doi:10.1039/C2AN35211GS3635364313716Anang, D. M., Rusul, G., Ling, F. H., & Bhat, R. (2010). Inhibitory effects of lactic acid and lauricidin on spoilage organisms of chicken breast during storage at chilled temperature. International Journal of Food Microbiology, 144(1), 152-159. doi:10.1016/j.ijfoodmicro.2010.09.014HINTON, A., & INGRAM, K. D. (2005). Microbicidal Activity of Tripotassium Phosphate and Fatty Acids toward Spoilage and Pathogenic Bacteria Associated with Poultry. Journal of Food Protection, 68(7), 1462-1466. doi:10.4315/0362-028x-68.7.1462Jeremiah, L. . (2001). Packaging alternatives to deliver fresh meats using short- or long-term distribution. Food Research International, 34(9), 749-772. doi:10.1016/s0963-9969(01)00096-5Ellis, D. I., & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science & Technology, 12(11), 414-424. doi:10.1016/s0924-2244(02)00019-5Vinci, G., & Antonelli, M. . (2002). Biogenic amines: quality index of freshness in red and white meat. Food Control, 13(8), 519-524. doi:10.1016/s0956-7135(02)00031-2Lovestead, T. M., & Bruno, T. J. (2010). Detection of poultry spoilage markers from headspace analysis with cryoadsorption on a short alumina PLOT column. Food Chemistry, 121(4), 1274-1282. doi:10.1016/j.foodchem.2010.01.044Bota, G. M., & Harrington, P. B. (2006). Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta, 68(3), 629-635. doi:10.1016/j.talanta.2005.05.001Grau, R., Sánchez, A. J., Girón, J., Iborra, E., Fuentes, A., & Barat, J. M. (2011). Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy. Food Research International, 44(1), 331-337. doi:10.1016/j.foodres.2010.10.011Sahar, A., Boubellouta, T., & Dufour, É. (2011). Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet. Food Research International, 44(1), 471-480. doi:10.1016/j.foodres.2010.09.006Lin, M., Al-Holy, M., Mousavi-Hesary, M., Al-Qadiri, H., Cavinato, A. G., & Rasco, B. A. (2004). Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600-1100 nm). Letters in Applied Microbiology, 39(2), 148-155. doi:10.1111/j.1472-765x.2004.01546.xMartínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eAmendola, V., Fabbrizzi, L., & Mosca, L. (2010). Anion recognition by hydrogen bonding: urea-based receptors. Chemical Society Reviews, 39(10), 3889. doi:10.1039/b822552bQuang, D. T., & Kim, J. S. (2010). Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chemical Reviews, 110(10), 6280-6301. doi:10.1021/cr100154pAmendola, V., Bonizzoni, M., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., Sancenón, F., & Taglietti, A. (2006). Some guidelines for the design of anion receptors. Coordination Chemistry Reviews, 250(11-12), 1451-1470. doi:10.1016/j.ccr.2006.01.006Chen, X., Zhou, Y., Peng, X., & Yoon, J. (2010). Fluorescent and colorimetric probes for detection of thiols. Chemical Society Reviews, 39(6), 2120. doi:10.1039/b925092aMohr, G. J. (2006). New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation–a review of recent developments. Analytical and Bioanalytical Chemistry, 386(5), 1201-1214. doi:10.1007/s00216-006-0647-3Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74(1), 113-130. doi:10.1016/j.meatsci.2006.04.024Rakow, N. A., & Suslick, K. S. (2000). A colorimetric sensor array for odour visualization. Nature, 406(6797), 710-713. doi:10.1038/35021028Lim, S. H., Kemling, J. W., Feng, L., & Suslick, K. S. (2009). A colorimetric sensor array of porous pigments. The Analyst, 134(12), 2453. doi:10.1039/b916571aPalacios, M. A., Nishiyabu, R., Marquez, M., & Anzenbacher, P. (2007). Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multianion Detection in Water. Journal of the American Chemical Society, 129(24), 7538-7544. doi:10.1021/ja0704784Wu, Y., Na, N., Zhang, S., Wang, X., Liu, D., & Zhang, X. (2009). Discrimination and Identification of Flavors with Catalytic Nanomaterial-Based Optical Chemosensor Array. Analytical Chemistry, 81(3), 961-966. doi:10.1021/ac801733kJanzen, M. C., Ponder, J. B., Bailey, D. P., Ingison, C. K., & Suslick, K. S. (2006). Colorimetric Sensor Arrays for Volatile Organic Compounds. Analytical Chemistry, 78(11), 3591-3600. doi:10.1021/ac052111sSuslick, B. A., Feng, L., & Suslick, K. S. (2010). Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas. Analytical Chemistry, 82(5), 2067-2073. doi:10.1021/ac902823wHuang, X., Xin, J., & Zhao, J. (2011). A novel technique for rapid evaluation of fish freshness using colorimetric sensor array. Journal of Food Engineering, 105(4), 632-637. doi:10.1016/j.jfoodeng.2011.03.034Anzenbacher, Jr., P., Lubal, P., Buček, P., Palacios, M. A., & Kozelkova, M. E. (2010). A practical approach to optical cross-reactive sensor arrays. Chemical Society Reviews, 39(10), 3954. doi:10.1039/b926220mRos-Lis, J. V., García, B., Jiménez, D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Valldecabres, M. C. (2004). Squaraines as Fluoro−Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols. Journal of the American Chemical Society, 126(13), 4064-4065. doi:10.1021/ja031987iRos-Lis, J. V., Martínez-Máñez, R., Rurack, K., Sancenón, F., Soto, J., & Spieles, M. (2004). Highly Selective Chromogenic Signaling of Hg2+in Aqueous Media at Nanomolar Levels Employing a Squaraine-Based Reporter. Inorganic Chemistry, 43(17), 5183-5185. doi:10.1021/ic049422qRos-Lis, J. V., Marcos, M. D., Mártinez-Máñez, R., Rurack, K., & Soto, J. (2005). A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg2+ Ions. Angewandte Chemie International Edition, 44(28), 4405-4407. doi:10.1002/anie.200500583Ros-Lis, J. V., Martínez-Máñez, R., & Soto, J. (2005). Colorimetric Signaling of Large Aromatic Hydrocarbons via the Enhancement of Aggregation Processes. Organic Letters, 7(12), 2337-2339. doi:10.1021/ol050564dCliment, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243Ábalos, T., Jiménez, D., Martínez-Máñez, R., Ros-Lis, J. V., Royo, S., Sancenón, F., … Parra, M. (2009). Hg2+ and Cu2+ selective detection using a dual channel receptor based on thiopyrylium scaffoldings. Tetrahedron Letters, 50(27), 3885-3888. doi:10.1016/j.tetlet.2009.04.060Climent, E., Giménez, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2011). Selective and sensitive chromo-fluorogenic sensing of anionic surfactants in water using functionalised silica nanoparticles. Chemical Communications, 47(24), 6873. doi:10.1039/c1cc11393cRoyo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497aSancenón, F., Descalzo, A. B., Martínez-Máñez, R., Miranda, M. A., & Soto, J. (2001). A Colorimetric ATP Sensor Based on 1,3,5-Triarylpent-2-en-1,5-diones. Angewandte Chemie International Edition, 40(14), 2640-2643. doi:10.1002/1521-3773(20010716)40:143.0.co;2-aEsteban, J., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Moragues, M., Soto, J., & Sancenón, F. (2010). Sensitive and Selective Chromogenic Sensing of Carbon Monoxide by Using Binuclear Rhodium Complexes. Angewandte Chemie International Edition, 49(29), 4934-4937. doi:10.1002/anie.201001344Moragues, M. E., Esteban, J., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Martínez, M., … Sancenón, F. (2011). Sensitive and Selective Chromogenic Sensing of Carbon Monoxide via Reversible Axial CO Coordination in Binuclear Rhodium Complexes. Journal of the American Chemical Society, 133(39), 15762-15772. doi:10.1021/ja206251rRos-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883bDe Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), 251-263. doi:10.1016/0169-7439(93)85002-xSmolander, M., Hurme, E., Latva-Kala, K., Luoma, T., Alakomi, H.-L., & Ahvenainen, R. (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innovative Food Science & Emerging Technologies, 3(3), 279-288. doi:10.1016/s1466-8564(02)00043-7Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33(1), 19-33. doi:10.1016/0168-1605(96)01137-3De Fernando, G. D. G., Nychas, G. J. E., Peck, M. W., & Ordóñez, J. A. (1995). Growth/survival of psychrotrophic pathogens on meat packaged under modified atmospheres. International Journal of Food Microbiology, 28(2), 221-231. doi:10.1016/0168-1605(95)00058-5Descalzo, A. B., Dolores Marcos, M., Monte, C., Martínez-Máñez, R., & Rurack, K. (2007). Mesoporous silica materials with covalently anchored phenoxazinone dyes as fluorescent hybrid materials for vapour sensing. Journal of Materials Chemistry, 17(44), 4716. doi:10.1039/b707473eDescalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683nComes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890Nychas, G.-J. E., & Tassou, C. C. (1997). Spoilage Processes and Proteolysis in Chicken as Detected by HPLC. Journal of the Science of Food and Agriculture, 74(2), 199-208. doi:10.1002/(sici)1097-0010(199706)74:23.0.co;2-4Jiménez, S. M., Salsi, M. S., Tiburzi, M. C., Rafaghelli, R. C., Tessi, M. A., & Coutaz, V. R. (1997). Spoilage microflora in fresh chicken breast stored at 4 °C : influence of packaging methods. Journal of Applied Microbiology, 83(5), 613-618. doi:10.1046/j.1365-2672.1997.00276.xDe Fernando, G. D. G., Nychas, G. J. E., Peck, M. W., & Ordóñez, J. A. (1995). Growth/survival of psychrotrophic pathogens on meat packaged under modified atmospheres. International Journal of Food Microbiology, 28(2), 221-231. doi:10.1016/0168-1605(95)00058-5BALAMATSIA, C., PATSIAS, A., KONTOMINAS, M., & SAVVAIDIS, I. (2007). Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: Correlation with microbiological and sensory attributes. Food Chemistry, 104(4), 1622-1628. doi:10.1016/j.foodchem.2007.03.013Balamatsia, C. C., Paleologos, E. K., Kontominas, M. G., & Savvaidis, I. N. (2006). Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 °C: possible role of biogenic amines as spoilage indicators. Antonie van Leeuwenhoek, 89(1), 9-17. doi:10.1007/s10482-005-9003-4Smolander, M., Hurme, E., Latva-Kala, K., Luoma, T., Alakomi, H.-L., & Ahvenainen, R. (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innovative Food Science & Emerging Technologies, 3(3), 279-288. doi:10.1016/s1466-8564(02)00043-7Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33(1), 19-33. doi:10.1016/0168-1605(96)01137-3Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.02

    A voltammetric e-tongue tool for the emulation of the sensorial analysis and the discrimination of vegetal milks

    Full text link
    [EN] The relevance of plant-based food alternatives to dairy products, such as vegetable milks, has been growing in recent decades, and the development of systems capable of classifying and predicting the sensorial profile of such products is interesting. In this context, a methodology to perform the sensorial analysis of vegetable milks (oat, soya, rice, almond and tiger nut), based on 12 parameters, was validated. An electronic tongue based on the combination of eight metals with pulse voltammetry was also tested. The current intensity profiles are characteristic for each non-dairy milk type. Data were processed with qualitative (PCA, dendrogram) and quantitative (PLS) tools. The PCA statistical analysis showed that when using three first principal components, which covered 77% of variance, the eight samples can be differentiated, and the preparation method (artisanal milks or commercial) is one of the main differentiation factors, together with raw material type. The PLS statistical analysis allowed models to be created to predict all 12 sensorial parameters. The goodness of the predictions depends on the parameter being particularly accurate for the body, the granularity in the wall of glass and homogeneity of colour. The results strongly suggest the potential feasibility of using electronic tongues as systems for easy, rapid and effective sensorial assessments of vegetable milks. (C) 2018 Elsevier B.V. All rights reserved.The authors thank the financial support from the Spanish Government (Project MAT2015-64139-C4-1-R) and the Generalitat Valenciana (Project PROMETEOII/2014/047).Pascual, L.; Gras Romero, ML.; Vidal Brotons, DJ.; Alcañiz Fillol, M.; Martínez-Máñez, R.; Ros-Lis, JV. (2018). A voltammetric e-tongue tool for the emulation of the sensorial analysis and the discrimination of vegetal milks. Sensors and Actuators B Chemical. 270:231-238. https://doi.org/10.1016/j.snb.2018.04.151S23123827

    Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations

    Full text link
    A family of dyes (L 1-L 6) that contain a thiazolylazo group as signalling subunit and several macrocyclic cavities with different ring sizes and type and number of heteroatoms as binding sites has been synthesized and characterized. Solutions of L 1-L 6 in acetonitrile show broad and structureless absorption bands in the 554-577 nm range with typicalmolar absorption coefficients that range from 20000 to 32000 M -1 cm -1. A detailed protonation study was carried out with solutions of L 1, L 2 and L 5 in acetonitrile. Addition of one equivalent of protons to L 1 and L 2 resulted in the development of a new band at 425 and 370 nm, respectively, which was ascribed to protonation in the aniline nitrogen. In contrast, protonation of L 5 resulted in a bathochromic shift of 25 nm of the absorption band that was conceivable with protonation of one of the nitrogen atoms of the azo moiety. These results were in agreement with 1H NMR spectroscopic data. Theoretical studies on the model ligand L 1 and on different possible protonation species were also performed by using density functional theory (DFT) quantum mechanical calculations. Colour modulations in solutions of L 1-L 6 in acetonitrile in the presence of the metal cations Fe 3+, Ni 2+, Zn 2+, Cd 2+, Pb 2+ and Hg 2+ have been studied. A selective chromogenic response of L 4 in the presence of Pb 2+ and L 5 in the presence of Hg 2+ was observed. To get a better insight into the chromophoric nature in the presence of metal cations, the interaction of Hg 2+ with the model compound L 1 in two different coordination modes was studied theoretically by using density functional theory (DFT) quantum mechanical calculations.Financial support by the Spanish Ministerio de Ciencia e Innovacion (MICINN) through projects MAT2009-14564-C04-01, CTQ2010-15364, Molecular Nanoscience (Consolider Ingenio CSD2007-00010) and Generalitat Valenciana (PROMETEO/2009/016 and PROMETEO/2009/108) is gratefully acknowledged.Abalos Aguado, T.; Moragues Pons, ME.; Royo Calvo, S.; Jiménez, D.; Martínez Mañez, R.; Soto Camino, J.; Sancenón Galarza, F.... (2012). Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations. European Journal of Inorganic Chemistry. (1):76-84. doi:10.1002/ejic.201100834S76841Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 24(3), 197. doi:10.1039/cs9952400197Bissell, R. A., de Silva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M., & Sandanayake, K. R. A. S. (1992). Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev., 21(3), 187-195. doi:10.1039/cs9922100187Dix, J. P., & Vögtle, F. (1978). Ionenselektive Kronenether-Farbstoffe. Angewandte Chemie, 90(11), 893-894. doi:10.1002/ange.19780901109Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eBeer, P. D., & Gale, P. A. (2001). Erkennung und Nachweis von Anionen: gegenwärtiger Stand und Perspektiven. Angewandte Chemie, 113(3), 502-532. doi:10.1002/1521-3757(20010202)113:33.0.co;2-aValeur, B. (2000). Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 205(1), 3-40. doi:10.1016/s0010-8545(00)00246-0Czarnik, A. W. (1994). Chemical Communication in Water Using Fluorescent Chemosensors. Accounts of Chemical Research, 27(10), 302-308. doi:10.1021/ar00046a003Rurack, K., & Resch-Genger, U. (2002). Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 31(2), 116-127. doi:10.1039/b100604pDe Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386pRurack, K. (2001). Flipping the light switch ‘ON’ – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(11), 2161-2195. doi:10.1016/s1386-1425(01)00492-9Loehr, H. G., & Voegtle, F. (1985). Chromo- and fluoroionophores. A new class of dye reagents. Accounts of Chemical Research, 18(3), 65-72. doi:10.1021/ar00111a001Takagi, M., & Ueno, K. (1984). Crown compounds as alkali and alkaline earth metal ion selective chromogenic reagents. Host Guest Complex Chemistry III, 39-65. doi:10.1007/3-540-12821-2_2Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111Chen, Y.-J., & Chung, W.-S. (2009). Tetrazoles and para-Substituted Phenylazo-Coupled Calix[4]arenes as Highly Sensitive Chromogenic Sensors for Ca2+. European Journal of Organic Chemistry, 2009(28), 4770-4776. doi:10.1002/ejoc.200900603Lee, H. G., Lee, J.-E., & Choi, K. S. (2006). Chromoionophoric N2S2 macrocycles exhibiting mercury(II) selectivity. Inorganic Chemistry Communications, 9(6), 582-585. doi:10.1016/j.inoche.2006.03.005Mahato, P., Ghosh, A., Saha, S., Mishra, S., Mishra, S. K., & Das, A. (2010). Recognition of Hg2+Using Diametrically Disubstituted Cyclam Unit. Inorganic Chemistry, 49(24), 11485-11492. doi:10.1021/ic1014797Hovind, H. R. (1975). Thiazolylazo dyes and their applications in analytical chemistry. A review. The Analyst, 100(1196), 769. doi:10.1039/an9750000769Lemos, V. A., Santos, E. S., Santos, M. S., & Yamaki, R. T. (2007). Thiazolylazo dyes and their application in analytical methods. Microchimica Acta, 158(3-4), 189-204. doi:10.1007/s00604-006-0704-9Saeed, M. M., Bajwa, S. Z., Ansari, M. S., & Ahmed, R. (2005). Solid phase sorption of microamount of Hg(II) onto 1-(2-thiazolylazo)-2-naphthol (TAN) loaded polyurethane foam. Radiochimica Acta, 93(3). doi:10.1524/ract.93.3.177.61610Starvin, A. M., & Rao, T. P. (2004). Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant. Journal of Hazardous Materials, 113(1-3), 75-79. doi:10.1016/j.jhazmat.2004.04.021Wang, M., Lin, J.-M., Qu, F., Shan, X., & Chen, Z. (2004). On-capillary complexation of metal ions with 4-(2-thiazolylazo)resorcinol in capillary electrophoresis. Journal of Chromatography A, 1029(1-2), 249-254. doi:10.1016/j.chroma.2003.12.011Takase, I. (2003). The use of 2-2-thiazolylazo-p-cresol to minimize the interference of Ni and Cu for the bismuth determination in alloys by hydride generation atomic absorption spectrometry. Talanta, 61(5), 597-602. doi:10.1016/s0039-9140(03)00365-5Amin, A. S. (2001). SPECTROPHOTOMETRIC DETERMINATION OF CADMIUM USING THIAZOLYLAZO CHROMOGENIC REAGENTS IN THE PRESENCE OF TRITON X-100: APPLICATION IN ENVIRONMENTAL SAMPLES. Analytical Letters, 34(1), 163-176. doi:10.1081/al-100002714Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015aMartínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Richman, J. E., & Atkins, T. J. (1974). Nitrogen analogs of crown ethers. Journal of the American Chemical Society, 96(7), 2268-2270. doi:10.1021/ja00814a056MACROCYCLIC POLYAMINES: 1,4,7,10,13,16-HEXAÄZACYCLOÖCTADECANE. (1978). Organic Syntheses, 58, 86. doi:10.15227/orgsyn.058.0086Krakowiak, K. E., Bradshaw, J. S., & Zamecka-Krakowiak, D. J. (1989). Synthesis of aza-crown ethers. Chemical Reviews, 89(4), 929-972. doi:10.1021/cr00094a008Higashino, K., Nakaya, T., & Ishiguro, E. (1994). Photovoltaic properties of azo compounds containing the thiazole group. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 81-88. doi:10.1016/1010-6030(94)87017-9Mustroph, H., & Epperlein, J. (2010). Quantitative Beschreibung der Absorptionsmaxima von substituierten 2-Thiazol-azofarbstoffen. Zeitschrift für Chemie, 23(8), 298-299. doi:10.1002/zfch.19830230810Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Spieles, M., & Rurack, K. (2008). Squaraines as Reporter Units: Insights into their Photophysics, Protonation, and Metal-Ion Coordination Behaviour. Chemistry - A European Journal, 14(32), 10101-10114. doi:10.1002/chem.200800300Forlani, L., De Maria, P., & Fini, A. (1980). Electrical effects in substituted thiazoles. pK a Values of some 5-substituted 2-aminothiazoles and 5-substituted 2-NN-dimethylaminothiazoles. Journal of the Chemical Society, Perkin Transactions 2, (8), 1156. doi:10.1039/p29800001156Haake, P., & Bausher, L. P. (1968). Thiazolium ions and related heteroaromatic systems. II. The acidity constants of thiazolium, oxazolium, and imidazolium ions. The Journal of Physical Chemistry, 72(6), 2213-2217. doi:10.1021/j100852a057SAWICKI, E. (1957). Physical Properties of the Aminoazobenzene Dyes. IV. The Position of Proton Addition1. The Journal of Organic Chemistry, 22(4), 365-367. doi:10.1021/jo01355a004Siiman, O., & Lepp, A. (1984). Protonation of the methyl orange derivative of aspartate adsorbed on colloidal silver: a surface-enhanced resonance Raman scattering and fluorescence emission study. The Journal of Physical Chemistry, 88(12), 2641-2650. doi:10.1021/j150656a043WADA, H., NAKAZAWA, O., & NAKAGAWA, G. (1974). Evaluation of 1-(2-thiazolylazo)-2-hydroxy-3-naphthoic acid as a metallochromic indicator. Talanta, 21(1), 97-102. doi:10.1016/0039-9140(74)80068-8Critical Stability Cosntants R. M. Smith A. E. Martell New York Vol. 2 1974García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines:  Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069zHyperChem. 6.03 Molecular Modeling System 2000(s. f.). doi:10.1021/ol062351Kim, H. J., Kim, S. H., Kim, J. H., Anh, L. N., Lee, J. H., Lee, C.-H., & Kim, J. S. (2009). ICT-based Cu(II)-sensing 9,10-anthraquinonecalix[4]crown. Tetrahedron Letters, 50(23), 2782-2786. doi:10.1016/j.tetlet.2009.03.149Ábalos, T., Jiménez, D., Moragues, M., Royo, S., Martínez-Máñez, R., Sancenón, F., … Gil, S. (2010). Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions. Dalton Transactions, 39(14), 3449. doi:10.1039/b921486kSchmittel, M., & Lin, H.-W. (2007). Quadruple-Channel Sensing: A Molecular Sensor with a Single Type of Receptor Site for Selective and Quantitative Multi-Ion Analysis. Angewandte Chemie, 119(6), 911-914. doi:10.1002/ange.200603362Nolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000qZhang, X., & Huang, J. (2010). Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chemical Communications, 46(33), 6042. doi:10.1039/c0cc01072cZhao, Q., Liu, S., Li, F., Yi, T., & Huang, C. (2008). Multisignaling detection of Hg2+ based on a phosphorescent iridium(iii) complex. Dalton Transactions, (29), 3836. doi:10.1039/b804858dTatay, S., Gaviña, P., Coronado, E., & Palomares, E. (2006). Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye. Organic Letters, 8(17), 3857-3860. doi:10.1021/ol0615580Lee, H., & Lee, S. S. (2009). Thiaoxaaza-Macrocyclic Chromoionophores as Mercury(II) Sensors: Synthesis and Color Modulation. Organic Letters, 11(6), 1393-1396. doi:10.1021/ol900241pYoon, S., Miller, E. W., He, Q., Do, P. H., & Chang, C. J. (2007). A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angewandte Chemie, 119(35), 6778-6781. doi:10.1002/ange.200701785Rurack, K., Resch-Genger, U., Spieles, M., & Bricks, J. L. (2000). Cation-triggered ‘switching on’ of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores. Chemical Communications, (21), 2103-2104. doi:10.1039/b006430kSu Lim, C., Won Kang, D., Shun Tian, Y., Hee Han, J., Lim Hwang, H., & Rae Cho, B. (2010). Detection of mercury in fish organs with a two-photon fluorescent probe. Chemical Communications, 46(14), 2388. doi:10.1039/b922305cRos-Lis, J. V., Martínez-Máñez, R., Rurack, K., Sancenón, F., Soto, J., & Spieles, M. (2004). Highly Selective Chromogenic Signaling of Hg2+in Aqueous Media at Nanomolar Levels Employing a Squaraine-Based Reporter. Inorganic Chemistry, 43(17), 5183-5185. doi:10.1021/ic049422qDescalzo, A. B., Martínez-Máñez, R., Radeglia, R., Rurack, K., & Soto, J. (2003). Coupling Selectivity with Sensitivity in an Integrated Chemosensor Framework:  Design of a Hg2+-Responsive Probe, Operating above 500 nm. Journal of the American Chemical Society, 125(12), 3418-3419. doi:10.1021/ja0290779Yuan, M., Li, Y., Li, J., Li, C., Liu, X., Lv, J., … Zhu, D. (2007). A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic Letters, 9(12), 2313-2316. doi:10.1021/ol0706399Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197tTian, M., & Ihmels, H. (2009). Selective ratiometric detection of mercury(ii) ions in water with an acridizinium-based fluorescent probe. Chemical Communications, (22), 3175. doi:10.1039/b821830gTian, M., Ihmels, H., & Benner, K. (2010). Selective detection of Hg2+ in the microenvironment of double-stranded DNA with an intercalator crown-ether conjugate. Chemical Communications, 46(31), 5719. doi:10.1039/c002727hWang, H.-H., Xue, L., Qian, Y.-Y., & Jiang, H. (2010). Novel Ratiometric Fluorescent Sensor for Silver Ions. Organic Letters, 12(2), 292-295. doi:10.1021/ol902624hAtilgan, S., Kutuk, I., & Ozdemir, T. (2010). A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II). Tetrahedron Letters, 51(6), 892-894. doi:10.1016/j.tetlet.2009.12.025Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Soto, J., Benito, Á., & García-Breijo, E. (2005). Multi-Channel Receptors and Their Relation to Guest Chemosensing and Reconfigurable Molecular Logic Gates. European Journal of Inorganic Chemistry, 2005(12), 2393-2403. doi:10.1002/ejic.200400844Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799Gaussian 09 2009Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439-4449. doi:10.1063/1.475855Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr990400

    A tetraazahydroxypyridinone derivative as inhibitor of apple juice enzymatic browning and oxidation

    Full text link
    [EN] Enzymatic browning in fruits and vegetables can produce undesirable colour changes and adversely affect the taste, flavour, and nutritional value. This fact poses a challenge to the food industry to apply appropriate inhibitors to control enzymatic browning to maintain food quality. Accordingly, this study aims to evaluate the effect of small mazamacrocyclic compounds modified with a hydroxypyridinone similar to kojic acid on enzymatic browning, total polyphenols and antioxidant activity in apple juice. The results showed how these compounds interact with the tyrosinase enzyme in a complex interaction inhibiting its activity. The hydroxypyridinone attached to the macrocycle (I1) was crucial to induce the greatest inhibition, being the most powerful inhibitor. The kinetic studies of I1 reveal mixed-type inhibition over tyrosinase with an IC50 of 0.30 mM, which was much higher than the calculated IC50 for I2 and I3. Furthermore, I1 at a concentration of 2.25 mM, significantly reduced the enzymatic browning in fresh apple juice by more than 50% after 1 h under stirring. Also, it completely stops the decrease in the total phenolic content and delays loss of antioxidant capacity during the first 30 min.Grant RTI2018-100910-B-C44 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and the Spanish Ministerio de Economia y Competitividad (Projects CTQ2016-78499C6-1-R, CTQ2017-90852-REDC, RED2018-102331-T, PID 2019110751RB-I00 and Unidad de Excelencia CEX2019-000919-M).Muñoz-Pina, S.; Duch-Calabuig, A.; Ros-Lis, JV.; Verdejo, B.; García-España, E.; Argüelles Foix, AL.; Andrés Grau, AM. (2022). A tetraazahydroxypyridinone derivative as inhibitor of apple juice enzymatic browning and oxidation. LWT - Food Science and Technology. 154:1-7. https://doi.org/10.1016/j.lwt.2021.1127781715

    Highly active hydrogenation catalysts based on Pd nanoparticles dispersed along hierarchical porous silica covered with polydopamine as interfacial glue

    Get PDF
    New catalysts based on Pd(0) nanoparticles (Pd NPs) on a bimodal porous silica of the UVM-7/polydopamine (PDA) support have been synthesized following two preparative strategies based on the sequential or joint incorporation of two components of the composite (Pd and PDA). We analyzed the role played by the PDA as 'interfacial glue' between the silica scaffold and the Pd NPs. The catalysts were tested for the hydrogenation of 4-nitrophenol using (NEt4)BH4 as the hydrogenating agent. In addition to the palladium content, the characterization of the catalysts at the micro and nanoscale has highlighted the importance of different parameters, such as the size and dispersion of the Pd NPs, as well as their accessibility to the substrate (greater or lesser depending on their entrapment level in the PDA) on the catalytic efficiency. Staged sequential synthesis has led to better catalytic results. The most active Pd(0) centers seem to be Pd NPs of less than 1 nm on the PDA surface. The efficiency of the catalysts obtained is superior to that of similar materials without PDA. A comprehensive comparison has been made with other catalysts based on Pd NPs in a wide variety of supports. The TOF values achieved are among the best described in the literature
    corecore