4 research outputs found

    Self-sustaining smouldering combustion of coal tar for the remediation of contaminated sand:Two-dimensional experiments and computational simulations

    Get PDF
    This study presents the development and validation of a computational model which simulates the propagation of a smouldering front through a porous medium against unique experiments in coal tar and sand. The model couples a multiphase flow solver in porous media with a perimeter expansion module based on Huygens principle to predict the spread. A suite of two-dimensional experiments using coal tar- contaminated sand were conducted to explore the time-dependent vertical and lateral smouldering front 6 propagation rates and final extent of remediation as a function of air injection rate. A thermal severity analysis revealed, for the first time, the temperature-time relationship indicative of coal tar combustion. The model, calibrated to the base case experiment, then correctly predicts the remaining experiments. This work provides further confidence in a model for predicting smouldering, which eventually is expected to be useful for designing soil remediation schemes for a novel technology based upon smouldering destruction of organic contaminants in soil

    Ouabain Stimulates a Na+/K+-ATPase-Mediated SFK-Activated Signalling Pathway That Regulates Tight Junction Function in the Mouse Blastocyst

    Get PDF
    The Na+/K+-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na+/K+-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS)-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK) members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10−3 M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10−4 M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability
    corecore