121 research outputs found
Ліберали України та вибори до і думи
Cytokine concentrations in biological fluids are widely used markers for activation of immunological processes. Confirming the reproducibility of measurements is important, especially in longitudinal or multicenter studies where time between analyses or different analyzing laboratories increases the intra-assay variability. In this study, the reproducibility of the cytokine analysis conducted with different assay platforms was studied by comparing the results of two cytokines [interleukin (IL)-6 in serum and nasal lavage fluid (NAL) and IL-8 in NAL] analyzed with Meso Scale Discovery (MSD) ultra-sensitive single and multiplex assay kits (n = 76). In addition, the difference in cytokine levels between two biological sample matrices was studied by comparing the results of altogether 9 cytokines [IL-6, IL-2, IL-8, IL12p70, IL-1β, granulocyte–macrophage colony-stimulating factor (GM-CSF), interferon (IFN)γ, IL-10 and tumor necrosis factor (TNF)α] measured from serum and NAL of the same study subjects (n = 460). The results show that the cytokine concentrations analyzed with single and multiplex assays are concordant but not equal. Comparison of the different matrices revealed that cytokine concentrations in serum do not correspond with concentrations detected in nasal lavage fluid. It can be concluded that comparability of the results from single and multiplex analysis of cytokines is high, but the concentrations should not be compared directly with each other. The differences between concentrations analyzed from serum and nasal lavage fluid indicate that the levels are specific for each matrix and represent distinct immunological conditions. (aut.ref.
Early age exposure to moisture and mould is related to FeNO at the age of 6 years
Background Exposure to indoor moisture damage and visible mold has been found to be associated with asthma and respiratory symptoms in several questionnaire-based studies by self-report. We aimed to define the prospective association between the early life exposure to residential moisture damage or mold and fractional exhaled nitric oxide (FeNO) and lung function parameters as objective markers for airway inflammation and asthma in 6-year-old children. Methods Home inspections were performed in children's homes when infants were on average 5 months old. At age 6 years, data on FeNO (n = 322) as well as lung function (n = 216) measurements were collected. Logistic regression and generalized additive models were used for statistical analyses. Results Early age major moisture damage and moisture damage or mold in the child's main living areas were significantly associated with increased FeNO levels (>75th percentile) at the age of 6 years (adjusted odds ratios, 95% confidence intervals, aOR (95% CI): 3.10 (1.35-7.07) and 3.16 (1.43-6.98), respectively. Effects were more pronounced in those who did not change residential address throughout the study period. For lung function, major structural damage within the whole home was associated with reduced FEV1 and FVC, but not with FEV1/FVC. No association with lung function was observed with early moisture damage or mold in the child's main living areas. Conclusion These results underline the importance of prevention and remediation efforts of moisture and mold-damaged buildings in order to avoid harmful effects within the vulnerable phase of the infants and children's immunologic development.Peer reviewe
Early age exposure to moisture damage and systemic inflammation at the age of 6 years
Cross-sectional studies have shown that exposure to indoor
moisture damage and mold may be associated with subclinical
inflammation. Our aim was to determine whether early age
exposure to moisture damage or mold is prospectively associated
with subclinical systemic inflammation or with immune
responsiveness in later childhood. Home inspections were
performed in children's homes in the first year of life. At age
6 years, subclinical systemic inflammation was measured by serum
C-reactive protein(CRP) and blood leucocytes and immune
responsiveness by ex vivo production of interleukin
1-beta(IL-1beta), IL-6 and tumor necrosis
factor-alpha(TNF-alpha) in whole blood cultures without
stimulation or after 24h stimulation with phorbol 12-myristate
13-acetate and ionomycin(PI), lipopolysaccharide(LPS) or
peptidoglycan(PPG) in 251 to 270 children. Moisture damage in
child's main living areas in infancy was not significantly
associated with elevated levels of CRP or leucocytes at 6 years.
In contrast, there was some suggestion for an effect on immune
responsiveness, as moisture damage with visible mold was
positively associated with LPS-stimulated production of
TNF-alpha and minor moisture damage was inversely associated
with PI-stimulated IL-1beta. While early life exposure to mold
damage may have some influence on later immune responsiveness,
it does not seem to increase subclinical systemic inflammation
in later life. This article is protected by copyright. All
rights reserved
Farm-like indoor microbiota in non-farm homes protects children from asthma development
Asthma prevalence has increased in epidemic proportions with urbanization, but growing up on traditional farms offers protection even today(1). The asthma-protective effect of farms appears to be associated with rich home dust microbiota(2,3), which could be used to model a health-promoting indoor microbiome. Here we show by modeling differences in house dust microbiota composition between farm and non-farm homes of Finnish birth cohorts(4) that in children who grow up in non-farm homes, asthma risk decreases as the similarity of their home bacterial microbiota composition to that of farm homes increases. The protective microbiota had a low abundance of Streptococcaceae relative to outdoor-associated bacterial taxa. The protective effect was independent of richness and total bacterial load and was associated with reduced proinflammatory cytokine responses against bacterial cell wall components ex vivo. We were able to reproduce these findings in a study among rural German children(2) and showed that children living in German non-farm homes with an indoor microbiota more similar to Finnish farm homes have decreased asthma risk. The indoor dust microbiota composition appears to be a definable, reproducible predictor of asthma risk and a potential modifiable target for asthma prevention.Peer reviewe
Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma
Peer reviewedPostprin
An integrated molecular risk score early in life for subsequent childhood asthma risk.
BACKGROUND
Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy).
METHODS
Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO).
RESULTS
Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years).
CONCLUSION
Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers
Budesonide and Formoterol Reduce Early Innate Anti-Viral Immune Responses In Vitro
Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined
Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts
Background: Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear. Objective: We sought to define phenotypes of atopic sensitization over the first 6 years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE). Methods: Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort. Results: The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-gamma ratio. A path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk. Conclusions: LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function.Peer reviewe
- …