44 research outputs found
Screening for candidate genes related with histological microstructure, meat quality and carcass characteristic in pig based on RNA-seq data
Objective The aim of the present study was to identify genetic variants based on RNA-seq data, obtained via transcriptome sequencing of muscle tissue of pigs differing in muscle histological structure, and to verify the variants’ effect on histological microstructure and production traits in a larger pig population. Methods RNA-seq data was used to identify the panel of single nucleotide polymorphisms (SNPs) significantly related with percentage and diameter of each fiber type (I, IIA, IIB). Detected polymorphisms were mapped to quantitative trait loci (QTLs) regions. Next, the association study was performed on 944 animals representing five breeds (Landrace, Large White, Pietrain, Duroc, and native Puławska breed) in order to evaluate the relationship of selected SNPs and histological characteristics, meat quality and carcasses traits. Results Mapping of detected genetic variants to QTL regions showed that chromosome 14 was the most overrepresented with the identification of four QTLs related to percentage of fiber types I and IIA. The association study performed on a 293 longissimus muscle samples confirmed a significant positive effect of transforming acidic coiled-coil-containing protein 2 (TACC2) polymorphisms on fiber diameter, while SNP within forkhead box O1 (FOXO1) locus was associated with decrease of diameter of fiber types IIA and IIB. Moreover, subsequent general linear model analysis showed significant relationship of FOXO1, delta 4-desaturase, sphingolipid 1 (DEGS1), and troponin T2 (TNNT2) genes with loin ‘eye’ area, FOXO1 with loin weight, as well as FOXO1 and TACC2 with lean meat percentage. Furthermore, the intramuscular fat content was positively associated (p<0.01) with occurrence of polymorphisms within DEGS1, TNNT2 genes and negatively with occurrence of TACC2 polymorphism. Conclusion This study’s results indicate that the SNP calling analysis based on RNA-seq data can be used to search candidate genes and establish the genetic basis of phenotypic traits. The presented results can be used for future studies evaluating the use of selected SNPs as genetic markers related to muscle histological profile and production traits in pig breeding
Biomolecular evidence reveals mares and long-distance imported horses sacrificed by the last pagans in temperate Europe
Horse sacrifice and deposition are enigmatic features of funerary rituals identified across prehistoric Europe that
persisted in the eastern Baltic. Genetic and isotopic analysis of horses in Balt cemeteries [1st to 13th centuries CE (Common Era)] dismantle prevailing narratives that locally procured stallions were exclusively selected. Strontium isotope analysis provides direct evidence for long-distance(~300 to 1500 kilometers) maritime transport of Fennoscandian horses to the eastern Baltic in the Late Viking Age (11th to 13th centuries CE). Genetic analysis proves that horses of both sexes were sacrificed with 34% identified as mares. Results transform the understanding of
selection criteria, disprove sex-based selection, and elevate prestige value as a more crucial factor. These findings also provide evidence that the continued interaction between pagans and their newly Christianized neighbors sustained the performance of funerary horse sacrifice until the medieval transition. We also present a reference 87Sr/86Sr isoscape for the southeastern Baltic, releasing the potential of future mobility studies in the region
Refining the evolutionary tree of the horse Y chromosome
The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity
Pig Genomics and Genetics
The pig (Sus scrofa) is the most popular large farm animal in the world [...
Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors
Equine metabolic syndrome (EMS) has become an important issue in modern veterinary medicine and is linked to the common, extremely painful, most-of-the-time performance-terminating hoof laminitis. The growing knowledge in the field of genetic background, inducing environmental factors, diagnosis, treatment and maintenance of affected equines led us to summarise the available information to be used not only for scientific purposes but for fieldwork. In horses, the clinical presentation of EMS includes: obesity or local fat deposition, bilateral lameness or hoof rings attributed to ongoing or previous (pasted) laminitis with the key feature of the occurrence of insulin dysregulation, disturbing the homeostasis within insulin, glucose and lipid metabolism. The management of EMS is based on dietary and fitness discipline; however, intensive research is ongoing in the field of regenerative medicine to develop modern and promising therapies
Variations in Fibrinogen-like 1 (FGL1) Gene Locus as a Genetic Marker Related to Fat Deposition Based on Pig Model and Liver RNA-Seq Data
The goal of this study was to evaluate the effects of mutations in the FGL1 gene associated with pig productive traits to enrich the genetic marker pool for further selection and to support the studies on FGL1 in the context of the fat deposition (FD) process. The variant calling and χ2 analyses of liver RNA-seq data were used to indicate genetic markers. FGL1 mutations were genotyped in the Złotnicka White (n = 72), Polish Large White (n = 208), Duroc (n = 72), Polish Landrace (PL) (n = 292), and Puławska (n = 178) pig breeds. An association study was performed using a general linear model (GLM) implemented in SAS® software. More than 50 crucial mutations were identified in the FGL1 gene. The association study showed a significant effect of the FGL1 on intramuscular fat (IMF), loin eye area, backfat thickness at the lumbar, ham mass (p = 0.0374), meat percentage (p = 0.0205), and loin fat (p = 0.0003). Alternate homozygotes and heterozygotes were found in the PL and Duroc, confirming the selective potential for these populations. Our study supports the theory that liver FGL1 is involved in the FD process. Moreover, since fat is the major determinant of flavor development in meat, the FGL1 rs340465447_A allele can be used as a target in pig selection focused on elevated fat levels
Functional Analysis of Genes Involved in Glycerolipids Biosynthesis (GPAT1 and GPAT2) in Pigs
Glycerol-3-phosphate acyltransferase (GPAT) enzymes catalyze the first step in triacylglycerol (TAG) synthesis. Genes that belong to the GPAT family are potential genetic markers for intramuscular fat content (IMF) content and thus meat quality. The objective of this study was to analyze the expression of GPAT1 and GPAT2 genes in musculus longissimus lumborum, liver and subcutaneous fat of various breeds of pigs. Furthermore, correlations between the genes’ expression abundance and utility traits, meat quality and meat texture parameters of pork were determined. The results obtained showed significant differences in the mRNA level of GPAT1 between analyzed tissues and breeds. The highest expression of GPAT1 gene was observed in liver tissue (p ≤ 0.01). Furthermore, significantly higher GPAT1 transcript level in the m. longissimus lumborum was observed for duroc in comparison to other analyzed breeds (p ≤ 0.05). Expression of the GPAT2 gene was shown only in the liver tissues, however statistically significant differences between the analyzed breeds were not observed. Correlation analysis confirmed the highest association between GPAT2 gene expression level in liver and cohesiveness and resilience traits of m. longissimus lumborum (p ≤ 0.01)
Single Nucleotide Polymorphisms in Genes Encoding Toll-Like Receptors 7 and 8 and Their Association with Proviral Load of SRLVs in Goats of Polish Carpathian Breed
Toll-like receptors (TLRs) 7 and 8 are important in single-stranded viral RNA recognition, so genetic variation of these genes may play a role in SRLVs infection and disease progression. Present study aimed to identify SNPs in genes encoding TLR7 and TLR8 in goats of Carpathian breed and analyze their association with the SRLVs provirus concentration as index of disease progression. A total of 14 SNPs were detected, 6 SNPs in the TLR7 gene locus and 8 SNPs in the TLR8 gene. Nine of the 14 identified polymorphisms, 4 in the TLR7 gene and 5 in TLR8 gene, were significantly associated with the SRLVs proviral concentration. These SNPs were located in 3′UTR, 5′UTR and intron sequences as well as in the coding sequences, but they led to silent changes. Homozygous genotypes of three TLR7 SNPs (synonymous variant 1:50703293, 3′UTR variant 1:50701297 and 5′UTR variant 1:50718645) were observed in goats with lower provirus copy number as well as in seronegative animals. The results obtained in this study suggest that SNPs of TLR7/TLR8 genes may induce differential innate immune response towards SRLVs affecting proviral concentration and thereby disease pathogenesis and progression. These findings support a role for genetic variations of TLR7 and TLR8 in SRLVs infection and warrants further studies on the effect of TLR7/TLR8 polymorphisms on SRLVs infection in different populations
A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits
Abstract Pork is the most popular meat in the world. Unfortunately, the selection pressure focused on high meat content led to a reduction in pork quality. The present study used RNA-seq technology to identify metabolic process genes related to pork quality traits and fat deposition. Differentially expressed genes (DEGs) were identified between pigs of Pulawska and Polish Landrace breeds for two the most important muscles (semimembranosus and longissimus dorsi). A total of 71 significant DEGs were reported: 15 for longissimus dorsi and 56 for semimembranosus muscles. The genes overexpressed in Pulawska pigs were involved in lipid metabolism (APOD, LXRA, LIPE, AP2B1, ENSSSCG00000028753 and OAS2) and proteolysis (CST6, CTSD, ISG15 and UCHL1). In Polish Landrace pigs, genes playing a role in biological adhesion (KIT, VCAN, HES1, SFRP2, CDH11, SSX2IP and PCDH17), actin cytoskeletal organisation (FRMD6, LIMK1, KIF23 and CNN1) and calcium ion binding (PVALB, CIB2, PCDH17, VCAN and CDH11) were transcriptionally more active. The present study allows for better understanding of the physiological processes associated with lipid metabolism and muscle fiber organization. This information could be helpful in further research aiming to estimate the genetic markers