16 research outputs found

    Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part C: Protein Synthesis and Post-Translational Processing in Eukaryotic Cells

    No full text
    The translation of mRNA constitutes the first step in the synthesis of a functional protein. The polypeptide chain is subsequently folded into the appropriate three-dimensional configuration and undergoes a variety of processing steps before being converted into its active form. These processing steps are intimately related to the cellular events that occur in the endoplasmic reticulum and Golgi compartments, and determine the sorting and transport of different proteins to their appropriate destinations within the cell. While the regulation of gene expression occurs primarily at the level of transcription, the expression of many genes can also be controlled at the level of translation. Most proteins can be regulated in response to extracellular signals. In addition, intracellular protein levels can be controlled by differential rates of protein degradation. Thus, the regulation of both the amounts and activities of intracellular proteins ultimately determines all aspects of cell behaviour

    Escherichia coli

    No full text

    Polyamines mediate glutamine-dependent induction of the intestinal epithelial heat shock response

    No full text
    Heat shock proteins (Hsps) are highly conserved proteins that play a role in cytoprotection and maintaining intestinal homeostasis. Glutamine is essential for the optimal induction of intestinal epithelial Hsp expression, but its mechanisms of action are incompletely understood. Glutamine is a substrate for polyamine synthesis and stimulates the activity of ornithine decarboxylase (ODC), a key enzyme for polyamine synthesis, in intestinal epithelial cells. Thus we investigated whether polyamines (putrescine, spermidine, or spermine) and their precursor ornithine mediate the induction of Hsp expression in IEC-18 rat intestinal epithelial cells. As previously observed, glutamine was required for heat stress induction of Hsp70 and Hsp25, although it had little effect under basal conditions. Under conditions of glutamine depletion, supplementation of ornithine or polyamines restored the heat-induced expression of Hsp70 and Hsp25. When ODC was inhibited by α-difluoromethylornithine (DFMO), an irreversible ODC inhibitor, the heat stress induction of Hsp70 and Hsp25 was decreased significantly, even in the presence of glutamine. Ornithine, polyamines, and DFMO did not modify the nuclear localization of heat shock transcription factor 1 (HSF-1). However, DFMO dramatically reduced glutamine-dependent HSF-1 binding to an oligonucleotide with heat shock elements (HSE), which was increased by glutamine. In addition, exogenous polyamines recovered the DNA-binding activity. These results indicate that polyamines play a critical role in the glutamine-dependent induction of the intestinal epithelial heat shock response through facilitation of HSF-1 binding to HSE
    corecore