354 research outputs found

    Preliminary signs of the initiation of deep convection by GNSS

    Get PDF
    This study reports on the exploitation of GNSS (Global Navigation Satellite System) and a new potential application for weather forecasts and nowcasting. We focus on GPS observations (post-processing with a time resolution of 5 and 15 min and fast calculations with a time resolution of 5 min) and try to establish typical configurations of the water vapour field which characterise convective systems and particularly which supply precursors of their initiation are associated with deep convection. We show the critical role of GNSS horizontal gradients of the water vapour content to detect small scale structures of the troposphere (i. e. convective cells), and then we present our strategy to obtain typical water vapour configurations by GNSS called "H2O alert". These alerts are based on a dry/wet contrast taking place during a 30 min time window before the initiation of a convective system. GNSS observations have been assessed for the rainfall event of 28-29 June 2005 using data from the Belgian dense network (baseline from 5 to 30 km). To validate our GNSS H2O alerts, we use the detection of precipitation by C-band weather radar and thermal infrared radiance (cloud top temperature) of the 10.8-micrometers channel [Ch09] of SEVIRI instrument on Meteosat Second Generation. Using post-processed measurements, our H2O alerts obtain a score of about 80 %. Final and ultra-rapid IGS (International GNSS Service) orbits have been tested and show equivalent results. Fast calculations (less than 10 min) have been processed for 29 June 2005 with a time resolution of 5 min. The mean bias (and standard deviation) between fast and reference post-processed ZTD (zenith total delay) and gradients are, respectively, 0.002 (+/- 0.008) m and 0.001 (+/- 0.004) m. The score obtained for the H2O alerts generated by fast calculations is 65 %

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: First Progress Report

    Get PDF
    This document reports on activities and achievements obtained during the first part of the ESA CEOS Intercalibration project. The period covered extends from March 2009 until December 2009.This document is the first progress report of the CEOS Intercalibration of Ground-Based Spectrometers and Lidars project. It summarizes activities performed and results achieved within each team

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Contract Change Notice 2012-2013: Final Report

    Get PDF
    This document is the final report of the Intercalibration of ground-based spectrometers and Lidars - Extension 2012-2013. It summarizes the activities performed in the period from November 2012 until December 2013 and the main results obtained

    Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes

    Get PDF
    Due to the scarcity of observational constraints and the rapidly changing environment in East and Southeast Asia, isoprene emissions predicted by models are expected to bear substantial uncertainties. The aim of this study is to improve upon the existing bottom-up estimates, and to investigate the temporal evolution of the fluxes in Asia over 1979-2012. To this purpose, we calculate the hourly emissions at 0.5& deg; & times;0.5 & deg; resolution using the MEGAN-MOHYCAN model driven by ECMWF ERA-Interim climatology. In order to remedy for known biases identified in previous studies, and to improve the simulation of interannual variability and trends in emissions, this study incorporates (i) changes in land use, including the rapid expansion of oil palms, (ii) meteorological variability according to ERA-Interim, (iii) long-term changes in solar radiation (dimming/brightening) constrained by surface network radiation measurements, and (iv) recent experimental evidence that South Asian tropical forests are much weaker isoprene emitters than previously assumed, and on the other hand, that oil palms have a strong isoprene emission capacity. These effects lead to a significant lowering (factor of 2) in the total isoprene fluxes over the studied domain, and to emission reductions reaching a factor of 3.5 in Southeast Asia. The bottom-up annual isoprene emissions for 2005 are estimated at 7.0, 4.8, 8.3, and 2.9 Tg in China, India, Indonesia and Malaysia, respectively. The isoprene flux anomaly over the whole domain and studied period is found to be strongly correlated with the Oceanic Niño Index ( Combining double low line 0.73), with positive (negative) anomalies related to El Niño (La Niña) years. Changes in temperature and solar radiation are the major drivers of the interannual variability and trends in the emissions, except over semi-arid areas such as northwestern China, Pakistan and Kazakhstan, where soil moisture is by far the main cause of interannual emission changes. In our base simulation, annual positive flux trends of 0.2% and 0.52% throughout the entire period are found in Asia and China, respectively, related to a positive trend in temperature and solar radiation. The impact of oil palm expansion in Indonesia and Malaysia is to enhance the trends over that region, e.g., from 1.17% to 1.5% in 1979-2005 in Malaysia. A negative emission trend is derived in India (ĝ'0.4%), owing to the negative trend in solar radiation data associated with the strong dimming effect likely due to increasing aerosol loadings. The bottom-up emissions are compared to field campaign measurements in Borneo and South China and further evaluated against top-down isoprene emission estimates constrained by GOME-2/MetOp-A formaldehyde columns through 2007-2012. The satellite-based estimates appear to support our assumptions, and confirm the lower emission rate in tropical forests of Indonesia and Malaysia. Additional flux measurements are clearly needed to characterize the spatial variability of emission factors better. Finally, a decreasing trend in the inferred top-down Chinese emissions since 2007 is in line with recorded cooling in China after that year, thus suggesting that the satellite HCHO columns are able to capture climate-induced changes in emissions. © 2014 Author(s)

    Characterisation of vertical BrO distribution during events of enhanced tropospheric BrO in Antarctica, from combined remote and in-situ measurements

    Get PDF
    Tropospheric BrO was measured by a ground-based remote-sensing spectrometer at Halley in Antarctica in spring 2007, and BrO was measured by satellite-borne remote-sensing spectrometers using similar spectral regions and similar Differential Optical Absorption Spectroscopy (DOAS) analyses. Near-surface BrO was simultaneously measured in situ at Halley by Chemical Ionisation Mass Spectrometer (CIMS), and in an earlier year near-surface BrO was measured at Halley over a long path by a ground-based DOAS spectrometer. During enhancement episodes, total amounts of tropospheric BrO from the ground-based remote-sensor were similar to those from space, but if we assume that the BrO was confined to the mixed layer they were very much larger than values measured by either near-surface technique. This large apparent discrepancy can be resolved if substantial amounts of BrO were in the free troposphere during most enhancement episodes. Amounts observed by the ground-based remote sensor at different elevation angles, and their formal inversions to vertical profiles, demonstrate that much of the BrO was indeed often in the free troposphere. This is consistent with the ~5 day lifetime of Bry and with the enhanced BrO observed during some Antarctic blizzards

    Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors

    Get PDF
    This work presents global tropospheric formaldehyde columns retrieved from near-UV radiance measurements performed by the GOME instrument onboard ERS-2 since 1995, and by SCIAMACHY, in operation on ENVISAT since the end of 2002. A special effort has been made to ensure the coherence and quality of the CH<sub>2</sub>O dataset covering the period 1996–2007. Optimised DOAS settings are proposed in order to reduce the impact of two important sources of error in the derivation of slant columns, namely, the polarisation anomaly affecting the SCIAMACHY spectra around 350 nm, and a major absorption band of the O<sub>4</sub> collision complex centred near 360 nm. The air mass factors are determined from scattering weights generated using radiative transfer calculations taking into account the cloud fraction, the cloud height and the ground albedo. Vertical profile shapes of CH<sub>2</sub>O are provided by the global CTM IMAGES based on an up-to-date representation of emissions, atmospheric transport and photochemistry. A comprehensive error analysis is presented. This includes errors on the slant columns retrieval and errors on the air mass factors which are mainly due to uncertainties in the a priori profile and in the cloud properties. The major features of the retrieved formaldehyde column distribution are discussed and compared with previous CH<sub>2</sub>O datasets over the major emission regions

    Global long-term monitoring of the ozone layer - a prerequisite for predictions

    Get PDF
    Although the Montreal Protocol now controls the production and emission of ozone depleting substances, the timing of ozone recovery is unclear. There are many other factors affecting the ozone layer, in particular climate change is expected to modify the speed of re-creation of the ozone layer. Therefore, long-term observations are needed to monitor the further evolution of the stratospheric ozone layer. Measurements from satellite instruments provide global coverage and are supplementary to selective ground-based observations. The combination of data derived from different space-borne instruments is needed to produce homogeneous and consistent long-term data records. They are required for robust investigations including trend analysis. For the first time global total ozone columns from three European satellite sensors GOME (ERS-2), SCIAMACHY (ENVISAT), and GOME-2 (METOP-A) are combined and added up to a continuous time series starting in June 1995. On the one hand it is important to monitor the consequences of the Montreal Protocol and its amendments; on the other hand multi-year observations provide the basis for the evaluation of numerical models describing atmospheric processes, which are also used for prognostic studies to assess the future development. This paper gives some examples of how to use satellite data products to evaluate model results with respective data derived from observations, and to disclose the abilities and deficiencies of atmospheric models. In particular, multi-year mean values derived from the Chemistry-Climate Model E39C-A are used to check climatological values and the respective standard deviations

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Final Report

    Get PDF
    The ESA CEOS Intercalibration project concentrated on important calibration activities addressing three key components of the ground-based network ground-truthing capacity in Europe, namely the Dobson/Brewer network of ozone spectrophotometers, the aerosol lidar EARLINET network and the UV-Vis MAXDOAS technique for air quality remote-sensing. This document summarizes activities and achievements during the third part of the ESA CEOS Intercalibration project. The period covered by this report extends from February 2012 until October 2012

    Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns

    Get PDF
    A new one-decade (1997–2006) dataset of formaldehyde (HCHO) columns retrieved from GOME and SCIAMACHY is compared with HCHO columns simulated by an updated version of the IMAGES global chemical transport model. This model version includes an optimized chemical scheme with respect to HCHO production, where the short-term and final HCHO yields from pyrogenically emitted non-methane volatile organic compounds (NMVOCs) are estimated from the Master Chemical Mechanism (MCM) and an explicit speciation profile of pyrogenic emissions. The model is driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, whereas biogenic emissions are provided either by the Global Emissions Inventory Activity (GEIA), or by a newly developed inventory based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) algorithms driven by meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). The comparisons focus on tropical ecosystems, North America and China, which experience strong biogenic and biomass burning NMVOC emissions reflected in the enhanced measured HCHO columns. These comparisons aim at testing the ability of the model to reproduce the observed features of the HCHO distribution on the global scale and at providing a first assessment of the performance of the current emission inventories. The high correlation coefficients (<i>r</i>>0.7) between the observed and simulated columns over most regions indicate a good consistency between the model, the implemented inventories and the HCHO dataset. The use of the MEGAN-ECMWF inventory improves the model/data agreement in almost all regions, but biases persist over parts of Africa and Australia. Although neither GFED version is consistent with the data over all regions, a better agreement is achieved over Indonesia and Southern Africa when GFEDv2 is used, but GFEDv1 succeeds better in getting the correct seasonal patterns and intensities of the fire episodes over the Amazon basin, as reflected in the significantly higher correlations calculated in this region. Although the uncertainties in the HCHO retrievals, especially over fire scenes, can be quite large, this study provides a first assessment about whether the improved methodologies and input data implemented in GFEDv2 and MEGAN-ECMWF lead to better results in the comparisons of modelled with observed HCHO column measurements

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Second Progress Report

    Get PDF
    This document summarizes activities and achievements during the second part of the ESA CEOS Intercalibration project. The period covered by this report extends from February 2011 until January 2012
    corecore