10,139 research outputs found

    Irreversible nucleation in molecular beam epitaxy: From theory to experiments

    Full text link
    Recently, the nucleation rate on top of a terrace during the irreversible growth of a crystal surface by MBE has been determined exactly. In this paper we go beyond the standard model usually employed to study the nucleation process, and we analyze the qualitative and quantitative consequences of two important additional physical ingredients: the nonuniformity of the Ehrlich-Schwoebel barrier at the step-edge, because of the existence of kinks, and the steering effects, due to the interaction between the atoms of the flux and the substrate. We apply our results to typical experiments of second layer nucleation.Comment: 11 pages. Table I corrected and one appendix added. To be published in Phys. Rev. B (scheduled issue: 15 February 2003

    Process tomography of ion trap quantum gates

    Get PDF
    A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this paper, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude--shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates

    Influence of adatom interactions on second layer nucleation

    Full text link
    We develop a theory for the inclusion of adatom interactions in second layer nucleation occurring in epitaxial growth. The interactions considered are due to ring barriers between pairs of adatoms and binding energies of unstable clusters. The theory is based on a master equation, which describes the time development of microscopic states that are specified by cluster configurations on top of an island. The transition rates are derived by scaling arguments and tested against kinetic Monte-Carlo simulations. As an application we reanalyze experiments to determine the step edge barrier for Ag/Pt(111).Comment: 4 pages, 4 figure

    Geometric phase gate on an optical transition for ion trap quantum computation

    Full text link
    We propose a geometric phase gate of two ion qubits that are encoded in two levels linked by an optical dipole-forbidden transition. Compared to hyperfine geometric phase gates mediated by electric dipole transitions, the gate has many interesting properties, such as very low spontaneous emission rates, applicability to magnetic field insensitive states, and use of a co-propagating laser beam geometry. We estimate that current technology allows for infidelities of around 104^{-4}.Comment: 4 pages, 2 figure

    Precision spectroscopy with two correlated atoms

    Full text link
    We discuss techniques that allow for long coherence times in laser spectroscopy experiments with two trapped ions. We show that for this purpose not only entangled ions prepared in decoherence-free subspaces can be used but also a pair of ions that are not entangled but subject to the same kind of phase noise. We apply this technique to a measurement of the electric quadrupole moment of the 3d D5/2 state of 40Ca+ and to a measurement of the linewidth of an ultrastable laser exciting a pair of 40Ca+ ions

    Island nucleation in the presence of step edge barriers: Theory and applications

    Full text link
    We develop a theory of nucleation on top of two-dimensional islands bordered by steps with an additional energy barrier ΔES\Delta E_S for descending atoms. The theory is based on the concept of the residence time of an adatom on the island,and yields an expression for the nucleation rate which becomes exact in the limit of strong step edge barriers. This expression differs qualitatively and quantitatively from that obtained using the conventional rate equation approach to nucleation [J. Tersoff et al., Phys. Rev. Lett.72, 266 (1994)]. We argue that rate equation theory fails because nucleation is dominated by the rare instances when two atoms are present on the island simultaneously. The theory is applied to two distinct problems: The onset of second layer nucleation in submonolayer growth, and the distribution of the sizes of top terraces of multilayer mounds under conditions of strong step edge barriers. Application to homoepitaxial growth on Pt(111) yields the estimate ΔES0.33\Delta E_S \geq 0.33 eV for the additional energy barrier at CO-decorated steps.Comment: 13 pages, 3 figure

    Reply to comment by Fries on â Cometary origin of atmospheric methane variations on Mars unlikelyâ

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137383/1/jgre20652_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137383/2/jgre20652.pd

    Non-Equilibrium Surface Diffusion Measurements in Systems with Interactions

    Get PDF
    Diffusion in surface overlayers with adsorbate-adsorbate interactions is described in terms of coverage-dependent diffusion coefficients. The measured phenomenological Arrhenius parameters (activation energy and prefactor) depend on the initial configuration of the system. Since different experimental methods probe the system in different states, the measured diffusion coefficients depend on the method used. Experimental results demonstrating this dependence are presented for O/W(110) -p(2x1) + p(2x2) and Ag/Si(111) -√3 x √3 R30°. They were measured during the evolution of the system to attain a new equilibrium state of different symmetry. In addition, simulations on lattice gas models with interactions, modeling other surface diffusion techniques (Laser-lnduced-Desorption, fluctuation, non-equilibrium kinetics) support the configuration-dependent results
    corecore