59 research outputs found
Fungal Planet description sheets : 320–370
Novel species of fungi described in the present study include the following from Malaysia: Castanediella
eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus
brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana
and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from
Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from
Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from
bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria
trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae
fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora
hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia),
Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India),
Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus
(Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola
from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon
granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus
(Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from
Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from
Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also
described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon
dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium
and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii
(French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis
from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea
europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from
Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological
and culture characteristics along with ITS DNA barcodes are provided for all taxa.Alina V. Alexandrova was supported by the Russian Science
Foundation (project N 14-50-00029). Ekaterina F. Malysheva, Olga V.
Morozova,
Alexander E. Kovalenko and Eugene S. Popov acknowledge
financial support from the Russian Foundation for Basic Research (project
13-04-00838a and 15-04-04645a). Margarita Dueñas, María P. Martín and
M. Teresa Telleria acknowledge financial support from the Plan Nacional I+D+I
projects No. CGL2009-07231 and CGL2012-3559. Cony Decock gratefully acknowledges the financial support received from
the FNRS / FRFC (convention FRFC 2.4544.10), the CNRS-French Guiana
and the Nouragues staff, which enabled fieldwork in French Guiana, and the
Belgian State – Belgian Federal Science Policy through the BCCMTM research
programme.http://www.ingentaconnect.com/content/nhn/pimjam201
Fungal Planet description sheets : 1182–1283
Novel species of fungi described in this study include those from various countries as follows: Algeria,
Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia,
Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus
australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of
Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae
on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae
and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil.
Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified
fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag
with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface
of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil,
Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa
endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera
indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense
from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium
stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata
hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi
and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp.,
Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis
obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia
sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma
ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on
plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp.,
Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros
sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.)
and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil
in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum
on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on
soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of
Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus
wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma
subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis
faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus
praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens
on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium
burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia
ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia
sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis
canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria
sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on
Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on
leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of
Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia
ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf
litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix
reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella
xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of
Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi
on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis
gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on
volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus
sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand,
Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA,
Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of
Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella
aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.http://www.ingentaconnect.com/content/nhn/pimjBiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Beta-Catenin Mutations are not Observed in Chronic Myeloid Leukemia
Aims and background. Studies reporting activated Wnt signaling in all stages of chronic myeloid leukemia (CML) have demonstrated that deregulation of the pathway plays a role in the pathogenesis of this disease. Several reports have suggested mechanisms for the deregulated Wnt signaling and beta-catenin stabilization observed in CML. One possible mechanism for beta-catenin stabilization could be the acquisition of mutations at its N-terminal domain, especially in the third exon where it is marked via phosphorylation for degradation. We sought to determine whether mutations in the third exon of the beta-catenin gene are responsible for the observed Wnt activation in CM
The contribution of myostatin (MSTN) and additional modifying genetic loci to race distance aptitude in Thoroughbred horses racing in different geographic regions
Background: Race distance aptitude in Thoroughbred horses is highly heritable and is influenced largely by variation at the myostatin gene (MSTN).
Objectives: In addition to MSTN, we hypothesised that other modifying loci contribute to best race distance.
Study design: Using 3006 Thoroughbreds, including 835 ‘elite’ horses, which were >3 years old, had race records and were sampled from Europe/
Middle-East, Australia/New Zealand, North America and South Africa, we performed genome-wide association (GWA) tests and separately developed a
genomic prediction algorithm to comprehensively catalogue additive genetic variation contributing to best race distance.
Methods: 48,896 single‐nucleotide polymorphism (SNP) genotypes were generated from high‐density SNP genotyping arrays. Heritability estimates, tests of GWA and genomic prediction models were derived for the phenotypes: average race distance, best race distance for elite, nonelite and all winning horses.
Results:
Heritability estimates were high (urn:x-wiley:04251644:media:evj13058:evj13058-math-0001 = 0.51, best race distance – elite; urn:x-wiley:04251644:media:evj13058:evj13058-math-0002 = 0.42, best race distance – nonelite; urn:x-wiley:04251644:media:evj13058:evj13058-math-0003 = 0.40, best race distance – all) and most of the variation was attributed to the MSTN gene. MSTN locus SNPs were the most strongly associated with the trait and included BIEC2‐438999 (ECA18:66913090; P = 4.51 × 10−110, average race distance; P = 2.33 × 10−42, best race distance – elite). The genomic prediction algorithm enabled the inclusion of variation from all SNPs in a model that partitioned horses into short and long cohorts following assignment of MSTN genotype. Additional genes with minor contributions to best race distance were identified.
Main limitations:
The nongenetic influence of owner/trainer decisions on placement of horses in suitable races could not be controlled.
Conclusions:
MSTN is the single most important genetic contributor to best race distance in the Thoroughbred. Employment of genetic prediction models will lead to more accurate placing of horses in races that are best suited to their inherited genetic potential for distance aptitude
- …