936 research outputs found
Ultraviolet Radiation from Evolved Stellar Populations -- I. Models
This series of papers comprises a systematic exploration of the hypothesis
that the far ultraviolet radiation from star clusters and elliptical galaxies
originates from extremely hot horizontal-branch (HB) stars and their post-HB
progeny. This first paper presents an extensive grid of calculations of stellar
models from the Zero Age Horizontal Branch through to a point late in post-HB
evolution or a point on the white dwarf cooling track. We use the term `Extreme
Horizontal Branch' (EHB) to refer to HB sequences of constant mass that do not
reach the thermally-pulsing stage on the AGB. These models evolve after core
helium exhaustionComment: Paper is uuencoded compressed PostScript file. Figures for this paper
are available from through anonymous
ftp://ftp.virginia.edu/public_access/bd4r/uv1fig.u
Note and Comment
The Law School; Unauthorized Operation by Physician; The Kansas Oil Refinery Bill; Garnishment of Public Corporations; The rule in Wild\u27s Case Today; Effect of a complicated Form of Ballot on the Elector\u27s Freedom of Choice; Situs of Debts for Garnishment; Malicious Interference With the Contract of Employmen
A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years
Climate models show that ice-sheet melt will dominate sea-level rise over the coming centuries, but our understanding of ice-sheet variations before the last interglacial 125,000 years ago remains fragmentary. This is because terrestrial deposits of ancient glacial and interglacial periods1,2,3 are overrun and eroded by more recent glacial advances, and are therefore usually rare, isolated and poorly dated4. In contrast, material shed almost continuously from continents is preserved as marine sediment that can be analysed to infer the time-varying state of major ice sheets. Here we show that the East Greenland Ice Sheet existed over the past 7.5 million years, as indicated by beryllium and aluminium isotopes (10Be and 26Al) in quartz sand removed by deep, ongoing glacial erosion on land and deposited offshore in the marine sedimentary record5,6. During the early Pleistocene epoch, ice cover in East Greenland was dynamic; in contrast, East Greenland was mostly ice-covered during the mid-to-late Pleistocene. The isotope record we present is consistent with distinct signatures of changes in ice sheet behaviour coincident with major climate transitions. Although our data are continuous, they are from low-deposition-rate sites and sourced only from East Greenland. Consequently, the signal of extensive deglaciation during short, intense interglacials could be missed or blurred, and we cannot distinguish between a remnant ice sheet in the East Greenland highlands and a diminished continent-wide ice sheet. A clearer constraint on the behaviour of the ice sheet during past and, ultimately, future interglacial warmth could be produced by 10Be and 26Al records from a coring site with a higher deposition rate. Nonetheless, our analysis challenges the possibility of complete and extended deglaciation over the past several million years
Natural Cycles, Gases
The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust
A Panchromatic Study of the Globular Cluster NGC 1904. I: The Blue Straggler Population
By combining high-resolution (HST-WFPC2) and wide-field ground based (2.2m
ESO-WFI) and space (GALEX) observations, we have collected a multi-wavelength
photometric data base (ranging from the far UV to the near infrared) of the
galactic globular cluster NGC1904 (M79). The sample covers the entire cluster
extension, from the very central regions up to the tidal radius. In the present
paper such a data set is used to study the BSS population and its radial
distribution. A total number of 39 bright () BSS has been
detected, and they have been found to be highly segregated in the cluster core.
No significant upturn in the BSS frequency has been observed in the outskirts
of NGC 1904, in contrast to other clusters (M 3, 47 Tuc, NGC 6752, M 5) studied
with the same technique. Such evidences, coupled with the large radius of
avoidance estimated for NGC 1904 ( core radii), indicate that
the vast majority of the cluster heavy stars (binaries) has already sunk to the
core. Accordingly, extensive dynamical simulations suggest that BSS formed by
mass transfer activity in primordial binaries evolving in isolation in the
cluster outskirts represent only a negligible (0--10%) fraction of the overall
population.Comment: ApJ accepte
Analysis of stratospheric ozone, temperature, and minor constituent data
The objective of this research is to use available satellite measurements of temperature and constituent concentrations to test the conceptual picture of stratospheric chemistry and transport. This was originally broken down into two sub-goals: first, to use the constituent data to search for critical tests of our understanding of stratospheric chemistry and second, to examine constituent transport processes emphasizing interactions with chemistry on various time scales. A third important goal which has evolved is to use the available solar backscattered ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) data from Nimbus 7 to describe the morphology of recent changes in Antarctic and global ozone with emphasis on searching for constraints to theories. The major effort now being pursued relative to the two original goals is our effort as a theoretical team for the Arctic Airborne Stratospheric Expedition (AASE). Our effort for the AASE is based on the 3D transport and chemistry model at Goddard. Our goal is to use this model to place the results from the mission data in a regional and global context. Specifically, we set out to make model runs starting in late December and running through March of 1989, both with and without heterogeneous chemistry. The transport is to be carried out using dynamical fields from a 4D data assimilation model being developed under separate funding from this task. We have successfully carried out a series of single constituent transport experiments. One of the things demonstrated by these runs was the difficulty in obtaining observed low N2O abundances in the vortex without simultaneously obtaining very high ozone values. Because the runs start in late December, this difficulty arises in the attempt to define consistent initial conditions for the 3D model. To accomplish a consistent set of initial conditions, we are using the 2D photochemistry-transport model of Jackman and Douglass and mapping in potential temperature, potential vorticity space as developed by Schoeberl and coworkers
Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5
The accurate modeling of cascades to unresolved scales is an important part of the tracer transport component of dynamical cores of weather and climate models. This paper aims to investigate the ability of the advection schemes in the National Center for Atmospheric Research's Community Atmosphere Model version 5 (CAM5) to model this cascade. In order to quantify the effects of the different advection schemes in CAM5, four two-dimensional tracer transport test cases are presented. Three of the tests stretch the tracer below the scale of coarse resolution grids to ensure the downscale cascade of tracer variance. These results are compared with a high resolution reference solution, which is simulated on a resolution fine enough to resolve the tracer during the test. The fourth test has two separate flow cells, and is designed so that any tracer in the western hemisphere should not pass into the eastern hemisphere. This is to test whether the diffusion in transport schemes, often in the form of explicit hyper-diffusion terms or implicit through monotonic limiters, contains unphysical mixing. <br><br> An intercomparison of three of the dynamical cores of the National Center for Atmospheric Research's Community Atmosphere Model version 5 is performed. The results show that the finite-volume (CAM-FV) and spectral element (CAM-SE) dynamical cores model the downscale cascade of tracer variance better than the semi-Lagrangian transport scheme of the Eulerian spectral transform core (CAM-EUL). Each scheme tested produces unphysical mass in the eastern hemisphere of the separate cells test
Satellite observation and mapping of wintertime ozone variability in the lower stratosphere
Comparison is made between 30 mbar ozone fields that are generated by a transport chemistry model utilizing the winds from the Goddard Space Flight Center stratospheric data assimilation system (STRATAN), observations from the LIMS instrument on Nimbus-7, and the ozone fields that result from 'flying a mathematical simulation of LIMS observations through the transport chemistry model ozone fields. The modeled ozone fields were found to resemble the LIMS observations, but the model fields show much more temporal and spatial structure than do the LIMS observations. The 'satellite mapped' model results resemble the LIMS observations much more closely. These results are very consistent with the earlier discussions of satellite space-time sampling by Salby
- …