28 research outputs found

    Irradiation-Induced Deinococcus radiodurans Genome Fragmentation Triggers Transposition of a Single Resident Insertion Sequence

    Get PDF
    Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences

    Photocatalytic Activity of Mesoporous Graphitic Carbon Nitride (mpg-C3N4) Towards Organic Chromophores Under UV and VIS Light Illumination

    No full text
    A template-assisted synthetic method including the thermal polycondensation of guanidine hydrochloride (GndCl) was utilized to synthesize highly-organized mesoporous graphitic carbon nitride (mpg-C3N4) photocatalysts. Comprehensive structural analysis of the mpg-C3N4 materials were performed by XPS, XRD, FT-IR, BET and solid-state NMR spectroscopy. Photocatalytic performance of the mpg-C3N4 materials was studied for the photodegradation of several dyes under visible and UV light illumination as a function of catalyst loading and the structure of mpg-C3N4 depending on the polycondensation temperature. Among all of the formerly reported performances in the literature (including the ones for Degussa P25 commercial benchmark), currently synthesized mpg-C3N4 photocatalysts exhibit a significantly superior visible light-induced photocatalytic activity towards rhodamine B (RhB) dye. Enhanced catalytic efficiency could be mainly attributed to the terminated polycondensation process, high specific surface area, and mesoporous structure with a wide pore size distribution

    The Swift gamma-ray burst mission

    No full text
    The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr(-1) and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1'-4' positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5" positions and perform spectroscopy in the 0.2-10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0".3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of similar to1 mcrab (similar to2x10(-11) ergs cm(-2) s(-1) in the 15-150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community, and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include (1) a large-area gamma-ray detector using the new CdZnTe detectors, (2) an autonomous rapid-slewing spacecraft, (3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments, (4) an observing program coordinated with other ground-based and space-based observatories, and (5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 yr of operations, and the spacecraft will have a lifetime to orbital decay of similar to8 yr
    corecore