4 research outputs found
Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity ▿
The objective of this study was to investigate how changes in soil pH affect the N2O and N2 emissions, denitrification activity, and size of a denitrifier community. We established a field experiment, situated in a grassland area, which consisted of three treatments which were repeatedly amended with a KOH solution (alkaline soil), an H2SO4 solution (acidic soil), or water (natural pH soil) over 10 months. At the site, we determined field N2O and N2 emissions using the 15N gas flux method and collected soil samples for the measurement of potential denitrification activity and quantification of the size of the denitrifying community by quantitative PCR of the narG, napA, nirS, nirK, and nosZ denitrification genes. Overall, our results indicate that soil pH is of importance in determining the nature of denitrification end products. Thus, we found that the N2O/(N2O + N2) ratio increased with decreasing pH due to changes in the total denitrification activity, while no changes in N2O production were observed. Denitrification activity and N2O emissions measured under laboratory conditions were correlated with N fluxes in situ and therefore reflected treatment differences in the field. The size of the denitrifying community was uncoupled from in situ N fluxes, but potential denitrification was correlated with the count of NirS denitrifiers. Significant relationships were observed between nirS, napA, and narG gene copy numbers and the N2O/(N2O + N2) ratio, which are difficult to explain. However, this highlights the need for further studies combining analysis of denitrifier ecology and quantification of denitrification end products for a comprehensive understanding of the regulation of N fluxes by denitrification
Plant Functional Types Differ in Their Long-term Nutrient Response to eCO2 in an Extensive Grassland
Increasing atmospheric CO2 enhances plant biomass production and may thereby change nutrient concentrations in plant tissues. The objective of this study was to identify the effect of elevated atmospheric CO2 concentrations on nutrient concentrations of grassland biomass that have been grown for 16 years (1998–2013). The grassland biomass grown at the extensively managed Giessen FACE experiment, fumigated with ambient and elevated CO2 (aCO2; eCO2; +20%) was harvested twice annually. Concentrations of C, N, P, K, Ca, Mg, Mn, Fe, Cu and Zn were determined separately for grasses, forbs and legumes. Under eCO2, the concentration of N was reduced in grasses, Ca was reduced in grasses and forbs, P was reduced in grasses but increased in legumes, Mg concentration was reduced in grasses, forbs and legumes and K was reduced in grasses but increased in forbs. The nutrient yield (in g nutrient yield of an element per m-2) of most elements indicated negative yield responses at a zero biomass response to eCO2 for grasses. K and Zn nutrient yields responded positively to eCO2 in forbs and Mn and Fe responded positively in forbs and legumes. The results suggest that under eCO2 the nutrient concentrations were not diluted by the CO2 fertilization effect. Rather, altered plant nutrient acquisitions via changed physiological mechanisms prevail for increased C assimilation under eCO2. Furthermore, other factors such as water or nutrient availability affected plant nutrient concentrations under eCO2