21 research outputs found

    Magnetic Resonance Imaging of Neural and Pulmonary Vascular Function: A Dissertation

    Get PDF
    Magnetic resonance imaging (MRI) has emerged as the imaging modality of choice in a wide variety experimental and clinical applications. In this dissertation, I will describe novel MRI techniques for the characterization of neural and pulmonary vascular function in preclinical models of disease. In the first part of this dissertation, experimental results will be presented comparing the identification of ischemic lesions in experimental stroke using dynamic susceptibility contrast (DSC) and a well validated arterial spin labeling (ASL). We show that DSC measurements of an index of cerebral blood flow are sensitive to ischemia, treatment, and stroke subregions. Further, we derived a threshold of cerebral blood flow for ischemia as measured by DSC. Finally, we show that ischemic lesion volumes as defined by DSC are comparable to those defined by ASL. In the second part of this dissertation, a methodology of visualizing clots in experimental animal models of stroke is presented. Clots were rendered visible by MRI through the addition of a gadolinium based contrast agent during formation. Modified clots were used to induce an experimental embolic middle cerebral artery occlusion. Clots in the cerebral vasculature were visualized in vivousing MRI. Further, the efficacy of recombinant tissue plasminogen activator (r-tPA) and the combination of r-tPA and recombinant annexin-2 (rA2) was characterized by clot visualization during lysis. In the third part of this dissertation, we present results of the application of hyperpolarized helium (HP-He) in the characterization of new model of experimental pulmonary ischemia. The longitudinal relaxation time of HP-He is sensitive to the presence of paramagnetic oxygen. During ischemia, oxygen exchange from the airspaces of the lungs to the capillaries is hindered resulting in increased alveolar oxygen content which resulted in the shortening of the HP-He longitudinal relaxation time. Results of measurements of the HP-He relaxation time in both normal and ischemic animals are presented. In the final part of this dissertation, I will present results of a new method to measure pulmonary blood volume (PBV) using proton based MRI. A T1 weighted, inversion recovery spin echo sequence with cardiac and respiratory gating was developed to measure the changes in signal intensity of lung parenchyma before and after the injection of a long acting intravascular contrast agent. PBV is related to the signal change in the lung parenchyma and blood before and after contrast agent. We validate our method using a model of hypoxic pulmonary vasoconstriction in rats

    Distribution of Hyperpolarized Xenon in the Brain Following Sensory Stimulation: Preliminary MRI Findings

    Get PDF
    In hyperpolarized xenon magnetic resonance imaging (HP 129Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP 129Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP 129Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP 129Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP 129Xe signal over baseline was 13–28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized 129Xe should make feasible the emergence of HP 129Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease

    Magnetic Resonance Imaging of Neural and Pulmonary Vascular Function

    Get PDF
    Magnetic resonance imaging (MRI) has emerged as the imaging modality of choice in a wide variety experimental and clinical applications. In this dissertation, I will describe novel MRI techniques for the characterization of neural and pulmonary vascular function in preclinical models of disease. In the first part of this dissertation, experimental results will be presented comparing the identification of ischemic lesions in experimental stroke using dynamic susceptibility contrast (DSC) and a well validated arterial spin labeling (ASL). We show that DSC measurements of an index of cerebral blood flow are sensitive to ischemia, treatment, and stroke subregions. Further, we derived a threshold of cerebral blood flow for ischemia as measured by DSC. Finally, we show that ischemic lesion volumes as defined by DSC are comparable to those defined by ASL. In the second part of this dissertation, a methodology of visualizing clots in experimental animal models of stroke is presented. Clots were rendered visible by MRI through the addition of a gadolinium based contrast agent during formation. Modified clots were used to induce an experimental embolic middle cerebral artery occlusion. Clots in the cerebral vasculature were visualized in vivo using MRI. Further, the efficacy of recombinant tissue plasminogen activator (r-tPA) and the combination of r-tPA and recombinant annexin-2 (rA2) was characterized by clot visualization during lysis. In the third part of this dissertation, we present results of the application of hyperpolarized helium (HP-He) in the characterization of new model of experimental pulmonary ischemia. The longitudinal relaxation time of HP-He is sensitive to the presence of paramagnetic oxygen. During ischemia, oxygen exchange from the airspaces of the lungs to the capillaries is hindered resulting in increased alveolar oxygen content which resulted in the shortening of the HP-He longitudinal relaxation time. Results of measurements of the HP-He relaxation time in both normal and ischemic animals are presented. In the final part of this dissertation, I will present results of a new method to measure pulmonary blood volume (PBV) using proton based MRI. A T1 weighted, inversion recovery spin echo sequence with cardiac and respiratory gating was developed to measure the changes in signal intensity of lung parenchyma before and after the injection of a long acting intravascular contrast agent. PBV is related to the signal change in the lung parenchyma and blood before and after contrast agent. We validate our method using a model of hypoxic pulmonary vasoconstriction in rats

    In vitro and In vivo imaging of antivasculogenesis induced by Noggin protein expression in human venous endothelial cells

    No full text
    Noggin protein is a potent bone morphogenetic protein (BMP) antagonist capable of inhibiting vasculogenesis even in the presence of provasculogenic VEGF and FGF-2. We found that human umbilical vein endothelial cells (HUVECs) do not express Noggin in culture and used these cells for modeling of antivasculogenesis. We hypothesized that high-efficiency transduction of HUVECs with bicistronic lentiviral vector encoding Noggin and enhanced green fluorescent protein (EGFP) enables direct visualization of Noggin effects in homogenous primary cell populations in vitro and in vivo. By comparing HUVECs transduced with a control GFP and GFP/Noggin expression cassettes, we showed that constitutive and orthotopic Noggin protein expression did not influence cell proliferation, down-regulated BMP-2 expression, and showed no effect on BMP receptor transcripts. We demonstrated that in contrast to GFP-only control, Noggin expression in endothelial cells abrogated endothelial migration in response to monolayer injury, blocked endothelial transmigration, and caused abrogation of cord formation in vitro. Adding exogenous BMP-4 restored the formation of cords. Imaging experiments in vivo investigated vessel formation in Matrigel implants in athymic mice by utilizing GFP imaging or magnetic resonance imaging of perfusion in the implants. Both approaches demonstrated the lack of functional vessel formation after the adoptive transfer of GFP/Noggin-expressing human endothelial cells in mice

    Characterization of gadolinium-based dynamic susceptibility contrast perfusion measurements in permanent and transient MCAO models with volumetric based validation by CASL

    No full text
    Perfusion imaging is crucial in imaging of ischemic stroke to determine ‘tissue at risk' for infarction. In this study we compared the volumetric quantification of the perfusion deficit in two rat middle-cerebral-artery occlusion (MCAO) models using two gadolinium-based contrast agents (P1152 (Guerbet) and Magnevist (Bayer-Schering, Pittsburgh, PA, USA)) as compared with our well established continuous arterial spin labeling (CASL) perfusion imaging technique. Animals underwent either permanent MCAO or transient MCAO with 80-min reperfusion. Imaging was performed at four different time points after MCAO. A region-of-interest (ROI) analysis of the subregions of the ischemic zone (core, penumbra, transient reversal (TR), and sustained reversal (SR)) using P1152 showed significant reduction in blood flow in the core and TR subregions relative to the penumbral and SR subregions while occluded. After reperfusion, a significant increase in blood flow was recorded at all time points after reperfusion in all regions except TR. From the ROI analysis the threshold for the penumbra was determined to be −62±11% and this value was subsequently used for quantification of the volumetric deficit. The ischemic volume as defined by dynamic susceptibility contrast (DSC), was only statistically different from the CASL-derived ischemic volume when using Magnevist at post-reperfusion time points

    Evaluation of oxygen sensitivity of hyperpolarized helium imaging for the detection of pulmonary ischemia

    No full text
    PURPOSE: In this study, a new model of pulmonary embolism in rats was developed and tested, to examine if hyperpolarized (HP) (3) He MR images can measure impairment of the exchange of oxygen from the airspaces to the blood during pulmonary embolism. METHODS: HP (3) He MRI was used to image six treatment-group rats in which a branch of the pulmonary artery was embolized, and six control-group rats. HP (3) He MR images were used to calculate the initial partial pressure of oxygen (pO ) and the rate of oxygen depletion (R) in rat lungs. RESULTS: The pO was significantly higher in the ischemic lung than in the contralateral normal side, and pO was significantly higher in the ischemic lung than in both sides of the control lungs. Mean R in ischemic lungs was significantly lower than in the contralateral lungs, and mean R in ischemic lungs was also significantly lower than in both control lungs. CONCLUSION: These results demonstrate that pO and R, as measured by the T1 decay of HP (3) He, are sensitive to pulmonary ischemia in rats, confirming the findings in studies performed in large animal models of pulmonary ischemia

    Using hyperpolarized 3He MRI to evaluate treatment efficacy in cystic fibrosis patients

    No full text
    PURPOSE: To use hyperpolarized (HP) (3)He MR imaging to assess functional lung ventilation in subjects with cystic fibrosis (CF) before and after treatment. MATERIALS AND METHODS: We performed HP (3)He static ventilation MRI scans on three subjects, using a Philips 3.0 Tesla (T) Achieva MRI scanner, before and after 11 days of in-patient treatment with combined intravenous and inhaled therapies for pulmonary exacerbations of CF. We also collected spirometry data. We quantified pulmonary ventilation volume measured with HP (3)He MRI using an advanced semi-automated analysis technique. RESULTS: Following 11 days of treatment with intravenous antibiotics, hypertonic saline, and rhDNase, HP (3)He MR images in one subject displayed a 25% increase in total ventilation volume. Total ventilation volume in the other two subjects slightly decreased. All three subjects showed increases in FEV(1) and FVC following treatment. CONCLUSION: In all subjects, the HP (3)He MR images provided detailed information on precisely where in the lungs gas was reaching. These data provide additional support for the conclusion that HP noble gas MRI can be a powerful tool for evaluating lung ventilation in patients with cystic fibrosis, but also raise important questions about the correlation between spirometry and HP gas MRI measurements

    Quantitative evaluation of C-arm CT cerebral blood volume in a canine model of ischemic stroke

    No full text
    BACKGROUND AND PURPOSE: Previous studies have shown the feasibility of assessing qualitative CBV measurements in the angiography suite by using FPD-CBCT systems. We have investigated the correlation of FPD-CBCT CBV lesion volumes to the infarct volume. MATERIALS AND METHODS: Unilateral strokes were created in 7 adult dogs. MR imaging and FPD-CBCT data were obtained after MCA occlusion. FPD-CBCT CBV and ADC maps were generated for all subjects. The animals were sacrificed immediately following the last imaging study to measure infarct volume on histology. The reliability of FPD-CBCT-based lesion volume measurements was compared with those measured histologically by using regression and Bland-Altman analysis. RESULTS: The best correlation (R(2) = 0.72) between lesion volumes assessed with FPD-CBCT and histology was established with a threshold of mean healthy CBV - 2.5 x SD. These results were inferior to the correlation of lesion volumes measured with ADC and histology (R(2) = 0.99). Bland-Altman analysis showed that the agreement of ADC-derived lesion volumes with histology was superior to the agreement of FPD-CBCT-derived lesion volumes with histology. CONCLUSIONS: We correlated FPD-CBCT measurements of CBV and MR ADC lesion volumes with histologically assessed infarct volume. As expected, ADC is a very accurate and precise method for determining the extent of infarction. FPD-CBCT CBV lesion volumes are correlated to the size of the infarct. Improvement of FPD-CBCT image quality provides an opportunity to establish quantitative CBV measurement in the angiography suite

    Assessment of repeatability of hyperpolarized gas MR ventilation functional imaging in cystic fibrosis

    No full text
    RATIONALE AND OBJECTIVES: Hyperpolarized (HP) gas magnetic resonance imaging (MRI) is an advanced imaging technique that provides high-resolution regional information on lung function without using ionizing radiation. Before this modality can be considered for assessing clinical or investigational interventions, baseline repeatability needs to be established. We assessed repeatability of lung function measurement using HP helium-3 MRI (HP (3)He MRI) in a small cohort of patients with cystic fibrosis (CF). MATERIALS AND METHODS: We examined repeatability of HP (3)He MR images of five patients with CF in four scanning sessions over a 4-week period. We acquired images on a Philips 3.0 Tesla Achieva MRI scanner using a quadrature, flexible, wrap-around, (3)He radiofrequency coil with a fast gradient-echo pulse sequence. We determined ventilation volume and ventilation defect volume using an advanced semiautomatic segmentation algorithm and also quantified ventilation heterogeneity. RESULTS: There were no significant differences in total ventilation volume, ventilation defect volume, ventilation defect percentage, or mean ventilation heterogeneity (repeated-measures analysis of variance, P = .2116, P = .2825, P = .2871, and P = .7265, respectively) in the patients across the four scanning sessions. CONCLUSIONS: Our results indicate that total ventilation volume, ventilation defect volume, ventilation defect percentage, and mean ventilation heterogeneity as assessed by HP gas MRI in CF patients with stable health are reproducible over time. This repeatability and the technique\u27s capability to provide noninvasive high-resolution data on regional lung function without ionizing radiation make (3)He MRI a potentially useful outcome measure for CF-related clinical trials

    Visualization of clot lysis in a rat embolic stroke model: application to comparative lytic efficacy

    No full text
    BACKGROUND AND PURPOSE: The purpose of this study was to develop a novel MRI method for imaging clot lysis in a rat embolic stroke model and to compare tissue plasminogen activator (tPA)-based clot lysis with and without recombinant Annexin-2 (rA2). METHODS: In experiment 1 we used in vitro optimization of clot visualization using multiple MRI contrast agents in concentrations ranging from 5 to 50 muL in 250 muL blood. In experiment 2, we used in vivo characterization of the time course of clot lysis using the clot developed in the previous experiment. Diffusion, perfusion, angiography, and T1-weighted MRI for clot imaging were conducted before and during treatment with vehicle (n=6), tPA (n=8), or rA2 plus tPA (n=8) at multiple time points. Brains were removed for ex vivo clot localization. RESULTS: Clots created with 25 muL Magnevist were the most stable and provided the highest contrast-to-noise ratio. In the vehicle group, clot length as assessed by T1-weighted imaging correlated with histology (r=0.93). Clot length and cerebral blood flow-derived ischemic lesion volume were significantly smaller than vehicle at 15 minutes after treatment initiation in the rA2 plus tPA group, whereas in the tPA group no significant reduction from vehicle was observed until 30 minutes after treatment initiation. The rA2 plus tPA group had a significantly shorter clot length than the tPA group at 60 and 90 minutes after treatment initiation and significantly smaller cerebral blood flow deficit than the tPA group at 90 minutes after treatment initiation. CONCLUSIONS: We introduce a novel MRI-based clot imaging method for in vivo monitoring of clot lysis. Lytic efficacy of tPA was enhanced by rA2
    corecore