15 research outputs found

    ESDA2008-59595 IN-SITU OBSERVATIONS OF DISLOCATION PATTERNING IN DEFORMED POLYCRYSTALLINE ALUMINUM

    No full text
    ABSTRACT The formation and evolution of dislocation patterns in pure polycrystalline aluminum was examined using transmission electron microscopy. The conventional characterization of the deformed samples was combined with in-situ tensile tests of prestrained samples which were carried out in order to get a better understanding of dislocation motion during deformation. The role of different types of boundaries was studied and it was found that while dense dislocation walls have an ordered structure since they are geometrically necessary, incidental dislocation boundaries can change their configuration from tangled to ordered

    The Role of Bulk Stiffening in Reducing the Critical Temperature of the Metal-to-Hydride Phase Transition and the Hydride Stability: The Case of Zr(Mo<sub>x</sub>Fe<sub>1−x</sub>)<sub>2</sub>-H<sub>2</sub>

    No full text
    This study aims to shed light on the unusual trend in the stabilities of Zr(MoxFe1−x)2, 0 ≤ x ≤ 1, hydrides. Both the rule of reversed stability and the crystal volume criterion correlate with the increased hydride stabilities from x = 0 to x = 0.5, but are in contrast with the destabilization of the end member ZrMo2 hydride. The pressure-composition isotherms of ZrMo2-H2 exhibit very wide solid solubility regions, which may be associated with diminished H–H elastic interaction, uelas. In order to discern this possibility, we measured the elastic moduli of Zr(MoxFe1−x)2, x = 0, 0.5, 1. The shear modulus, G, shows a moderate variation in this composition range, while the bulk modulus, B, increases significantly and monotonically from 148.2 GPa in ZrFe2 to 200.4 GPa in ZrMo2. The H–H elastic interaction is proportional to B and therefore its increase cannot directly account for a decrease in uelas. Therefore, we turn our attention to the volume of the hydrogen atom, vH, which usually varies in a limited range. Two coexisting phases, a Laves cubic (a = 7.826 Å) and a tetragonal (a = 5.603 Å, c = 8.081 Å) hydride phase are identified in ZrMo2H3.5, obtained by cooling to liquid nitrogen temperature at about 50 atm. The volume of the hydrogen atom in these two hydrides is estimated to be 2.2 Å3/(H atom). Some very low vH values, have been reported by other investigators. The low vH values, as well as the one derived in this work, significantly reduce uelas for ZrMo2-H2, and thus reduce the corresponding critical temperature for the metal-to-hydride phase transition, and the heat of hydride formation. We suggest that the bulk stiffening in ZrMo2 confines the corresponding hydride expansion and thus reduces the H-H elastic interaction

    Improved Formability of Mg-AZ80 Alloy under a High Strain Rate in Expanding-Ring Experiments

    No full text
    Magnesium alloys offer a favored alternative to steels and aluminum alloys due to their low density and relatively high specific strength. Their application potentials are, however, impeded by poor formability at room temperature. In the current work, improved formability for the commercial magnesium AZ80 alloy was attained through the application of the high-rate electro-magnetic forming (EMF) technique. With the EMF system, elongation of 0.2 was achieved while only 0.11 is obtained through quasistatic loading. Systematic microstructural and textural investigations prior, during and post deformation under high strain-rate experiments were carried out using electron back-scattered diffraction (EBSD) and other microscopic techniques. The analysis indicates that enhanced elongation is achieved as a result of the combination of deformation, comprising basal and non-basal slip systems, twinning and dynamic recrystallization. An adopted EMF-forming technique is tested which results in enhanced elongation without failure and a higher degree of dynamically annealed microstructure

    A Review of Nanocrystalline Film Thermoelectrics on Lead Chalcogenide Semiconductors: Progress and Application

    No full text
    Submicron-structured films of thermoelectric materials, exhibiting an improved thermoelectric figure of merit, are reviewed, including methods of fabrication and characterization. The review emphasizes the beneficial role of the grain boundaries in polycrystalline films. The enhanced Seebeck coefficient of lead chalcogenide films is attributed to a potential relief that is built along the grain boundaries. It scatters charge carriers with low energy and does not affect carriers with higher energy. The model that accounts for the thermoelectric properties of the films is described and assessed experimentally. The application of a flexible thermoelectric device (module) based on the nanocrystalline film thermoelectric semiconductors as high sensitivity radiation detectors is suggested

    Development of a High Perfomance Gas Thermoelectric Generator (TEG) with Possibible Use of Waste Heat

    No full text
    A huge concern regarding global warming, as well as the depletion of natural fuel resources, has led to a wide search for alternative energy sources. Due to their high reliability and long operation time, thermoelectric generators are of significant interest for waste heat recovery and power generation. The main disadvantage of TEGs is the low efficiency of thermoelectric commercial modules. In this work, a unique design for a multilayer TE unicouple is suggested for an operating temperature range of 50–600 °C. Two types of thermoelectric materials were selected: «low temperature» n-and p-type TE materials (for the operating temperature range of 50–300 °C) based on Bi2Te3 compounds and «middle temperature» (for the operating temperature range of 300–600 °C) n- and p-type TE materials based on the PbTe compound. The hot extrusion technology was applied to fabricate n- and p-type low-temperature TE materials. A unique design of multilayer TEG was experienced to achieve an efficiency of up to 15%. This allows for the possibility of extracting this amount of electrical power from the heat generated for domestic and water heating

    Thermal Expansion of MgTiO3 Made by Sol-Gel Technique at Temperature Range 25–890 °C

    No full text
    MgTiO3 is a material commonly used in the industry as capacitors and resistors. The high-temperature structure of MgTiO3 has been reported only for materials synthesized by the solid-state method. This study deals with MgTiO3 formed at low temperatures by the sol-gel synthesis technique. Co-precipitated xerogel precursors of nanocrystalline magnesium titanates, with Mg:Ti ratio near 1:1, were subjected to thermal treatment at 1200 &deg;C for 5 h in air. A sample with fine powders of MgTiO3 (geikielite) as a major phase with Mg2TiO4 (qandilite) as a minor phase was obtained. The powder was scanned on a hot-stage X-ray powder diffractometer at temperatures between 25 and 890 &deg;C. The lattice parameters and the atomic positions of the two phases were determined as a function of temperature. The thermal expansion coefficients of the geikielite were derived and compared with previously published data using the solid-state synthesis technique, providing insights on trends in materials properties at elevated temperature as a function of synthesis. It was found that the deviation of the present results in comparison to previously reported data do not originate from the method of synthesis but rather from the fact that there is an asymmetric solubility gap in geikielite. The lattice parameters of this study present the property of stoichiometric MgTiO3 and are compared to previously reported non-stoichiometric MgTiO3 with excess of Ti. The values of lattice parameters of the non-stoichiometric versus temperature of geikielite found the same for both solid-state reaction and sol-gel products

    The Influence of Crystal Orientation and Thermal State of a Pure Cu on the Formation of Helium Blisters

    No full text
    The factors that influence the formation of helium blisters in copper were studied, including crystallographic grain orientation and thermomechanical conditions. Helium implantation experiments were conducted at 40 KeV with a dose of 5 × 1017 ions/cm2, and the samples were then subjected to post-implantation heat treatments at 450 °C for different holding times. A scanning electron microscope (SEM) equipped with an electron backscatter diffraction (EBSD) detector was used to analyze the samples, revealing that the degree of blistering erosion and its evolution with time varied with the crystallographic plane of the free surface in different ways in annealed and cold rolled copper. Out of the investigated states, rolled copper with a (111) free surface had superior helium blistering durability. This is explained by the consideration of the multivariable situation, including the role of dislocations and vacancies. For future plasma-facing component (PFC) candidate material, similar research should be conducted in order to find the optimal combination of material properties for helium blistering durability. In the case of Cu selection as a PFC, the two practical approaches to obtain the preferred (111) orientation are cold rolling and thin layer technologies

    Tailoring Microstructure and Mechanical Properties of Additively-Manufactured Ti6Al4V Using Post Processing

    No full text
    Additively-manufactured Ti-6Al-4V (Ti64) exhibits high strength but in some cases inferior elongation to those of conventionally manufactured materials. Post-processing of additively manufactured Ti64 components is investigated to modify the mechanical properties for specific applications while still utilizing the benefits of the additive manufacturing process. The mechanical properties and fatigue resistance of Ti64 samples made by electron beam melting were tested in the as-built state. Several heat treatments (up to 1000 °C) were performed to study their effect on the microstructure and mechanical properties. Phase content during heating was tested with high reliability by neutron diffraction at Los Alamos National Laboratory. Two different hot isostatic pressings (HIP) cycles were tested, one at low temperature (780 °C), the other is at the standard temperature (920 °C). The results show that lowering the HIP holding temperature retains the fine microstructure (~1% β phase) and the 0.2% proof stress of the as-built samples (1038 MPa), but gives rise to higher elongation (~14%) and better fatigue life. The material subjected to a higher HIP temperature had a coarser microstructure, more residual β phase (~2% difference), displayed slightly lower Vickers hardness (~15 HV10N), 0.2% proof stress (~60 MPa) and ultimate stresses (~40 MPa) than the material HIP’ed at 780 °C, but had superior elongation (~6%) and fatigue resistance. Heat treatment at 1000 °C entirely altered the microstructure (~7% β phase), yield elongation of 13.7% but decrease the 0.2% proof-stress to 927 MPa. The results of the HIP at 780 °C imply it would be beneficial to lower the standard ASTM HIP temperature for Ti6Al4V additively manufactured by electron beam melting
    corecore