32 research outputs found
In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects
The repair of osteochondral defects is one of the major clinical challenges in orthopaedics. Well-established osteochondral tissue engineering methods have shown promising results for the early treatment of small defects. However, less success has been achieved for the regeneration of large defects, which is mainly due to the mechanical environment of the joint and the heterogeneous nature of the tissue. In this study, we developed a multi-layered osteochondral scaffold to match the heterogeneous nature of osteochondral tissue by harnessing additive manufacturing technologies and combining the established art laser sintering and material extrusion techniques. The developed scaffold is based on a titanium and polylactic acid matrix-reinforced collagen “sandwich” composite system. The microstructure and mechanical properties of the scaffold were examined, and its safety and efficacy in the repair of large osteochondral defects were tested in an ovine condyle model. The 12-week in vivo evaluation period revealed extensive and significantly higher bone in-growth in the multi-layered scaffold compared with the collagen–HAp scaffold, and the achieved stable mechanical fixation provided strong support to the healing of the overlying cartilage, as demonstrated by hyaline-like cartilage formation. The histological examination showed that the regenerated cartilage in the multi-layer scaffold group was superior to that formed in the control group. Chondrogenic genes such as aggrecan and collagen-II were upregulated in the scaffold and were higher than those in the control group. The findings showed the safety and efficacy of the cell-free “translation-ready” osteochondral scaffold, which has the potential to be used in a one-step surgical procedure for the treatment of large osteochondral defects
Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated: In vivo optical imaging in the second biological window
Biomedicine is continuously demanding new luminescent materials to be used as optical probes for the acquisition of high resolution, high contrast and high penetration in vivo images. These materials, in combination with advanced techniques, could constitute the first step towards new diagnosis and therapy tools. In this work, we report on the synthesis of long lifetime rare-earth-doped fluoride nanoparticles by adopting different strategies: core/shell and dopant engineering. The here developed nanoparticles show intense infrared emission in the second biological window with a long luminescence lifetime close to 1 millisecond. These two properties make the here presented nanoparticles excellent candidates for time-gated infrared optical bioimaging. Indeed, their potential application as optical imaging contrast agents for autofluorescence-free in vivo small animal imaging has been demonstrated, allowing high contrast real-time tracking of gastrointestinal absorption of nanoparticles and transcranial imaging of intracerebrally injected nanoparticles in the murine brainThis work was supported in part by the grants from the Fundamental Research Funds for the Central Universities, China (HIT. BRETIV.201503 and AUGA5710052614) and the National Natural Science Foundation of China (51672061). We thank Dr Lina Wu at the Fourth Hospital of Harbin Medical University for her kind help with the MTT assay, and Dr Tymish Y. Ohulchanskyy at Shenzhen University for his kind help with the fluorescence lifetime measurement. The work was also supported by the Ministerio de Economia y Competitividad of Spain (grant MAT2016-75362-C3-1-R). Jie Hu acknowledges the scholarship from the China Scholarship Council (No. 201506650003). Dirk H. Ortgies is grateful to the Spanish Ministry of Economy and Competitiveness for a Juan de la Cierva scholarship (No. FJCI-2014-21101) and the Spanish Institute of Health (ISCIII) for a Sara Borell Fellowship (No. CD17/00210
Using 3D finite element models verified the importance of callus material and microstructure in biomechanics restoration during bone defect repair
<p><b>Background:</b> There is lack of further observations on the microstructure and material property of callus during bone defect healing and the relationships between callus properties and the mechanical strength. <b>Methods:</b> Femur bone defect model was created in rabbits and harvested CT data to reconstruct finite element models at 1 and 2 months. Three types of assumed finite element models were compared to study the callus properties, which assumed the material elastic property as heterogeneous (R-model), homogenous (H-model) or did not change from 1 to 2 months (U-model). <b>Results:</b> The apparent elastic moduli increased at 2 months (from 355.58 ± 132.67 to 1139.30 ± 967.43 MPa) in R-models. But there was no significant difference in apparent elastic moduli between R-models (355.58 ± 132.67 and 1139.30 ± 967.43 MPa) and H-models (344.79 ± 138.73 and 1001.52 ± 692.12 MPa) in 1 and 2 months. A significant difference of apparent elastic moduli was found between the R-model (1139.30 ± 967.43 MPa) and U-model group (207.15 ± 64.60 MPa) in 2 months. <b>Conclusions:</b> This study showed that the callus structure stability remodeled overtime to achieve a more effective structure, while the material quality of callus tissue is a very important factor for callus strength. At the meantime, this study showed an evidence that the material heterogeneity maybe not as important as it is in bone fracture model.</p
Inorganic Polymeric Materials for Injured Tissue Repair: Biocatalytic Formation and Exploitation
Two biocatalytically produced inorganic biomaterials show great potential for use in regenerative medicine but also other medical applications: bio-silica and bio-polyphosphate (bio-polyP or polyP). Biosilica is synthesized by a group of enzymes called silicateins, which mediate the formation of amorphous hydrated silica from monomeric precursors. The polymeric silicic acid formed by these enzymes, which have been cloned from various siliceous sponge species, then undergoes a maturation process to form a solid biosilica material. The second biomaterial, polyP, has the extraordinary property that it not only has morphogenetic activity similar to biosilica, i.e., can induce cell differentiation through specific gene expression, but also provides metabolic energy through enzymatic cleavage of its high-energy phosphoanhydride bonds. This reaction is catalyzed by alkaline phosphatase, a ubiquitous enzyme that, in combination with adenylate kinase, forms adenosine triphosphate (ATP) from polyP. This article attempts to highlight the biomedical importance of the inorganic polymeric materials biosilica and polyP as well as the enzymes silicatein and alkaline phosphatase, which are involved in their metabolism or mediate their biological activity
Physical spherical phase compensation in reflection digital holographic microscopy
Reflection configured digital holographic microscopy (DHM) can perform accurate optical topography measurements of reflecting objects, such as MEMs, MOEMs, and semiconductor wafer. It can provide non-destructive quantitative measurements of surface roughness and geometric pattern characterization with nanometric axial resolution in real-time. However, the measurement results may be affected by an additional phase curvature introduced by the microscope objective (MO) used in DHM. It needs to be removed either by numerical compensation or by physical compensation.
We present a method of physical spherical phase compensation for reflection DHM in the Michelson configuration. In the object arm, collimated light is used for illumination. Due to the use of the MO, the object wavefront may have a spherical phase curvature. In the reference arm, a lens and mirror combination is used to generate a spherical recording reference wave in order to physically compensate the spherical phase curvature of the object wavefront. By controlling the position of the mirror and the sample stage, the compensation process has been demonstrated. The relative positions of the test specimen and the reference mirror must be fixed for the physical spherical phase to be totally compensated. A numerical plane reference wave is preferred for the numerical reconstruction of the phase introduced by the test specimen. Experimental results on wafer pattern recognition are also given
The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism
It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play important roles in stimulating cellular functions and guiding tissue regeneration. But efficacy degree of some nanomaterials to promote specific tissue formation is still not clear. We hereby comparatively studied the osteogenic ability of our treated multi-walled carbon nanotubes (MCNTs) and the main inorganic mineral component of natural bone, nano-hydroxyapatite (nHA) in the same system, and tried to tell the related mechanism. In vitro culture of human adipose-derived mesenchymal stem cells (HASCs) on the MCNTs and nHA demonstrated that although there was no significant difference in the cell adhesion amount between on the MCNTs and nHA, the cell attachment strength and proliferation on the MCNTs were better. Most importantly, the MCNTs could induce osteogenic differentiation of the HASCs better than the nHA, the possible mechanism of which was found to be that the MCNTs could activate Notch involved signaling pathways by concentrating more proteins, including specific bone-inducing ones. Moreover, the MCNTs could induce ectopic bone formation in vivo while the nHA could not, which might be because MCNTs could stimulate inducible cells in tissues to form inductive bone better than nHA by concentrating more proteins including specific bone-inducing ones secreted from M2 macrophages. Therefore, MCNTs might be more effective materials for accelerating bone formation even than nHA
Interleukin17A Promotes Postoperative Cognitive Dysfunction by Triggering β-Amyloid Accumulation via the Transforming Growth Factor-β (TGFβ)/Smad Signaling Pathway.
Although postoperative cognitive dysfunction (POCD) is relatively common in elderly patients who have undergone major surgery, the mechanisms underlying this postoperative complication are unclear. Previously, we have investigated the role of cytokine-mediated hippocampal inflammation in the development of POCD in a rat model. Here, we sought to determine in mice the role of cytokine interleukin17A (IL17A) in POCD and to characterize the associated signaling pathways. Old mice underwent hepatectomy surgery in the presence or absence of IL17A monoclonal antibody, and cognitive function, hippocampal neuroinflammation, and pathologic markers of Alzheimer's disease (AD) were assessed. We found that the level of IL17A in the hippocampus was increased in hepatectomy mice and that cognitive impairment after surgery was associated with the appearance of certain pathological hallmarks of AD: activation of astrocytes, β-amyloid1-42 (Aβ1-42) production, upregulation of transforming growth factor-β (TGFβ), and increased phosphorylation of signaling mother against decapentaplegic peptide 3 (Smad3) protein in the hippocampus. Surgery-induced changes in cognitive dysfunction and changes in Aβ1-42 and TGFβ/Smad signaling were prevented by the administration of IL17A monoclonal antibody. In addition, IL17A-stimulated TGFβ/Smad activation and Aβ1-42 expression were reversed by IL17A receptor small interfering RNA and a TGFβ receptor inhibitor in cultured astrocytes. Our findings suggest that surgery can provoke IL17A-related hippocampal damage, as characterized by activation of astrocytes and TGFβ/Smad pathway dependent Aβ1-42 accumulation in old subjects. These changes likely contribute to the cognitive decline seen in POCD
The impact of perceived risk of online takeout packaging and the moderating role of educational level
Abstract With the rapid development of e-commerce and the impact of COVID-19, online takeout has become the first choice of more and more consumers. Previous research has indicated that food packaging is of great significance to marketing performance, yet very little is known about the mechanisms through which food packaging pollution risk affects online takeout consumption. This study proposes an expanded model of the Theory of Planned Behavior (TPB) by incorporating the Concept of Perceived Risk (CPR) to analyze the mechanism of consumers’ packaging pollution risk perception (PPRP) on their purchasing intention toward online takeout. Online survey was performed to collect data from 336 valid respondents in China, which was analyzed using structural equation modeling. The research findings verify the effectiveness of the TPB in the context of Chinese online takeout. Notably, the PPRP of online takeout was found to have a significant negative impact on consumers’ attitudes, subjective norms, and perceived behavioral control (PBC). It was also confirmed that consumers’ attitudes, subjective norms, and PBC regarding online takeout partially mediate the negative relationship between PPRP and purchase intention. In addition, the findings corroborate the granular nuances among three groups concerning consumers’ education level. The results do not only provide suggestions to the online takeout industry but also contribute theoretical value and practical significance for the improvement of sustainable food consumption