95 research outputs found

    A generalized simplicial model and its application

    Full text link
    Higher-order structures, consisting of more than two individuals, provide a new perspective to reveal the missed non-trivial characteristics under pairwise networks. Prior works have researched various higher-order networks, but research for evaluating the effects of higher-order structures on network functions is still scarce. In this paper, we propose a framework to quantify the effects of higher-order structures (e.g., 2-simplex) and vital functions of complex networks by comparing the original network with its simplicial model. We provide a simplicial model that can regulate the quantity of 2-simplices and simultaneously fix the degree sequence. Although the algorithm is proposed to control the quantity of 2-simplices, results indicate it can also indirectly control simplexes more than 2-order. Experiments on spreading dynamics, pinning control, network robustness, and community detection have shown that regulating the quantity of 2-simplices changes network performance significantly. In conclusion, the proposed framework is a general and effective tool for linking higher-order structures with network functions. It can be regarded as a reference object in other applications and can deepen our understanding of the correlation between micro-level network structures and global network functions

    PO-298 Effect of exercise and Siyeshen upon hippocampal cytochrome c and caspase-3 of diabetic rats

    Get PDF
    Objective To observe the effects of aerobic exercise and Siyeshen water extract on cytochrome c (Cyt c) and caspase-3 in hippocampus of diabetic rats and to explore the possible mechanism of improving diabetes. Methods Healthy male Wister rats fed with high fat and high sugar and combined with streptozotocin to establish type II diabetes model. They were randomly divided into 4 groups: diabetic control group, exercise group, Siyeshen group and exercise+Siyeshen group, and another normal control group, with 6 rats in each group. After aerobic exercise (15m/min, 5°slope, 60min, every other day) or/and Siyeshen (200mg/kg) gastrointestinal administration for 8w, the expression of Cyt c and caspase-3 in hippocampus of each group were detected by immunoblotting, and mRNA expressions were detected by RT-PCR. Results Compared with the normal control group, the mRNA and protein expressions of Cyt c and caspase-3 in the hippocampus of the diabetic control group were significantly increased (P<0.05). Compared with the diabetic control group, the blood glucose level of exercise group and exercise+ Siyeshen group decreased (P<0.05), the mRNA and protein expression of Cyt c and caspase-3 decreased significantly (P<0.05), but there were no significant changes in the mRNA and protein expression of Cyt c and caspase-3 between Siyeshen group and diabetic control group (P﹥0.05). Conclusions Exercise and exercise combined with Siyeshen can inhibit cytochrome c release and reduce caspase-3 protein expression, which may be related to the improvement of blood glucose levels in diabetic rats

    Transcriptome-wide association study reveals novel susceptibility genes for coronary atherosclerosis

    Get PDF
    BackgroundGenetic risk factors substantially contributed to the development of coronary atherosclerosis. Genome-wide association study (GWAS) has identified many risk loci for coronary atherosclerosis, but the translation of these loci into therapeutic targets is limited for their location in non-coding regions. Here, we aimed to screen the potential coronary atherosclerosis pathogenic genes expressed though TWAS (transcriptome wide association study) and explore the underlying mechanism association.MethodsFour TWAS approaches (PrediXcan, JTI, UTMOST, and FUSION) were used to screen genes associated with coronary atherosclerosis. Enrichment analysis of TWAS-identified genes was applied through the Metascape website. The summary-data-based Mendelian randomization (SMR) analysis was conducted to provide the evidence of causal relationship between the candidate genes and coronary atherosclerosis. At last, the cell type-specific expression of the intersection genes was examined by using human coronary artery single-cell RNA-seq, interrogating the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity.ResultsWe identified 19 genes by at least three approaches and 1 gene (NBEAL1) by four approaches. Enrichment analysis enriching the genes identified at least by two TWAS approaches, suggesting that these genes were markedly enriched in asthma and leukocyte mediated immunity reaction. Further, the summary-data-based Mendelian randomization (SMR) analysis provided the evidence of causal relationship between NBEAL1 gene and coronary atherosclerosis, confirming the protecting effects of NBEAL1 gene and coronary atherosclerosis. At last, the single cell cluster analysis demonstrated that NBEAL1 gene has differential expressions in macrophages, plasma cells and endothelial cells.ConclusionOur study identified the novel genes associated with coronary atherosclerosis and suggested the potential biological function for these genes, providing insightful guidance for further biological investigation and therapeutic approaches development in atherosclerosis-related diseases

    Optimizing drip fertigation at different periods to improve yield, volatile compounds and cup quality of Arabica coffee

    Get PDF
    How to improve and regulate coffee bean yield and quality through split fertilization in the whole life cycle of coffee is still unclear and deserves further study. A field experiment of 5-year-old Arabica coffee trees was conducted for 2 consecutive years from 2020 to 2022. The fertilizer (750 kg ha-1 year-1, N-P2O5-K2O:20%-20%-20%) was split in three times at early flowering (FL), the berry expansion (BE), and the berry ripening (BR). Taking equal fertilization throughout the growth cycle (FL250BE250BR250) as the control check, variable fertilizations including FL150BE250BR350, FL150BE350BR250, FL250BE150BR350, FL250BE350BR150, FL350BE150BR250, and FL350BE250BR150. Leaf net photosynthetic rate (Anet), stomatal conductance (gs), transpiration rate (Tr), leaf water use efficiency (LWUE), carboxylation efficiency (CE), partial factor productivity of fertilizer (PFP), bean yield, crop water use efficiency (WUE), bean nutrients, volatile compounds and cup quality, and the correlation of nutrients with volatile compounds and cup quality was evaluated. FL350BE250BR150 had the maximum Anet and gs, followed by FL250BE350BR150. The highest dry bean yield and WUE were obtained from FL250BE350BR150, which increased by 8.86% and 8.47% compared with FL250BE250BR250 in two-year average. The ash, total sugar, fat, protein, caffeine and chlorogenic acid in FL250BE350BR150 were 6.47%, 9.48%, 3.60%, 14.02%, 4.85% and 15.42% higher than FL250BE250BR250. Cluster analysis indicated FL150BE350BR250, FL250BE350BR150, FL350BE150BR250 and FL350BE250BR150 under medium roasted degree increased pyrazines, esters, ketones and furans, FL150BE350BR250 and FL250BE350BR150 under dark roasted degree increased ketones and furans. The aroma, flavor, acidity and overall score of medium roasted coffee were higher than dark roasted coffee, while the body score of dark roasted coffee was higher than medium roasted coffee. The nutrient contents were correlated with the volatile compounds and cup quality. TOPSIS indicated that FL250BE350BR150 was the optimal fertilization mode in the xerothermic regions. The obtained optimum fertilization mode can provide a scientific basis for coffee fertilization optimization and management
    • …
    corecore