70 research outputs found

    Simulation of coastal resource and environmental carrying capacity in the Yangtze River delta coastal zone based on shared socioeconomic pathways

    Get PDF
    Study of resource and environmental carrying capacity is an important research content of sustainable development science and the theoretical support for land space optimization. Existing research theories need to be deepened, and spatial simulation studies are relatively lacking. This study aimed to assess the current and future resource and environmental carrying capacity in the Yangtze River Delta region’s coastal zone and enhance sustainable development by exploring the application of shared socioeconomic pathway (SSPs) scenarios at the spatial pattern scale in regional resource and environmental carrying capacity simulation studies. Based on the FLUS and InVEST models, this study introduced the Coastal Resource and Environmental Carrying Capacity Index (CRECC) from the dimensions of “pressure” and “support” using land use remote sensing monitoring data and SSPs scenario data. A CRECC evaluation index system and quantitative evaluation method for the Yangtze River Delta were constructed. The results showed that from 2000 to 2020, the CRECC of the Yangtze River Delta coastal zone increased, the carrying capacity decreased, and the spatial distribution was low in the north and high in the south. The carrying capacity under the five SSP scenarios did not improve. The mismatch between natural ecological conditions and the intensity of human activities in the shoreline area was more prominent than in the study area, with the SSP1 and SSP5 scenarios being the most obvious. The supporting indicators have a more significant influence on improving CRECC than the pressure indicators, among which the supply capacity of water resources, land resources, and atmospheric environmental quality are the main limiting factors in the process of future sustainable economic-ecological development. This study provides ideas and examples for exploring spatial and temporal predictions of resources and environmental carrying capacity in coastal zones

    Composite metamaterials with dual-band magnetic resonances in the terahertz frequency regime

    Full text link
    Composite metamaterials(CMMs) combining a subwavelength metallic hole array (i.e. one-layer fishnet structure) and an array of split-ring resonators(SRRs) on the same board are fabricated with gold films on silicon wafer. Transmission measurements of the CMMs in the terahertz range have been performed. Dual-band magnetic resonances, namely, a LC resonance at 4.40 THz and an additional magnetic resonance at 8.64 THz originating from the antiparallel current in wire pairs in the CMMs are observed when the electrical field polarization of the incident light is parallel to the gap of the component SRR. The numerical simulations agree well with the experimental results and further clarify the nature of the dual-band magnetic resonances.Comment: 4 figures, 14 page

    Surface plasmon polaritons assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling

    Full text link
    Metal films grown on Si wafer perforated with a periodic array of subwavelength holes have been fabricated and anomalous enhanced transmission in the mid-infrared regime has been observed. High order transmission peaks up to Si(2,2) are clearly revealed due to the large dielectric constant contrast of the dielectrics at the opposite interfaces. Si(1,1) peak splits at oblique incidence both in TE and TM polarization, which confirms that anomalous enhanced transmission is a surface plasmon polaritons (SPPs) assisted diffraction phenomenon. Theoretical transmission spectra agree excellently with the experimental results and confirm the role of SPPs diffraction by the lattice.Comment: 4 pages, 5 figures, 26 reference

    A Network-Based Approach to Investigate the Pattern of Syndrome in Depression

    Get PDF
    In Traditional Chinese Medicine theory, syndrome is essential to diagnose diseases and treat patients, and symptom is the foundation of syndrome differentiation. Thus the combination and interaction between symptoms represent the pattern of syndrome at phenotypic level, which can be modeled and analyzed using complex network. At first, we collected inquiry information of 364 depression patients from 2007 to 2009. Next, we learned classification models for 7 syndromes in depression using naïve Bayes, Bayes network, support vector machine (SVM), and C4.5. Among them, SVM achieves the highest accuracies larger than 0.9 except for Yin deficiency. Besides, Bayes network outperforms naïve Bayes for all 7 syndromes. Then key symptoms for each syndrome were selected using Fisher's score. Based on these key symptoms, symptom networks for 7 syndromes as well as a global network for depression were constructed through weighted mutual information. Finally, we employed permutation test to discover dynamic symptom interactions, in order to investigate the difference between syndromes from the perspective of symptom network. As a result, significant dynamic interactions were quite different for 7 syndromes. Therefore, symptom networks could facilitate our understanding of the pattern of syndrome and further the improvement of syndrome differentiation in depression

    Adjunctive granisetron therapy in patients with sepsis or septic shock (GRANTISS): A single-center, single-blinded, randomized, controlled clinical trial

    Get PDF
    Background: In preclinical experiments, we demonstrated that the 5-HT3 receptor antagonist granisetron results in reduced inflammation and improved survival in septic mice. This randomized controlled trial was designed to assess the efficacy and safety of granisetron in patients with sepsis.Methods: Adult patients with sepsis and procalcitonin ≥ 2 ng/ml were randomized in a 1:1 ratio to receive intravenous granisetron (3 mg every 8 h) or normal saline at the same volume and frequency for 4 days or until intensive care unit discharge. The primary outcome was 28-day all-cause mortality. Secondary outcomes included the duration of supportive therapies for organ function, changes in sequential organ failure assessment scores over 96 h, procalcitonin reduction rate over 96 h, the incidence of new organ dysfunction, and changes in laboratory variable over 96 h. Adverse events were monitored as the safety outcome.Results: The modified intention-to-treat analysis included 150 septic patients. The 28-day all-cause mortalities in the granisetron and placebo groups were 34.7% and 35.6%, respectively (odds ratio, 0.96; 95% CI, 0.49–1.89). No differences were observed in secondary outcomes. In the subgroup analysis of patients without abdominal or digestive tract infections, the 28-day mortality in the granisetron group was 10.9% lower than mortality in the placebo group. Adverse events were not statistically different between the groups.Conclusion: Granisetron did not improve 28-day mortality in patients with sepsis. However, a further clinical trial targeted to septic patients without abdominal/digestive tract infections perhaps is worthy of consideration

    Anti-Fouling Behaviors of a Modified Surface Induced by an Ultrasonic Surface Rolling Process for 304 Stainless Steel

    No full text
    This research aimed to investigate the effects of an ultrasonic surface rolling process (USRP) on the deposition behaviors in CaCO3 crystallization fouling for 304 stainless steel (304SS). The microstructure, surface morphology, and hydrophobic properties of the modified layer were characterized with optical microscopy, a roughness profile measurement instrument, and a contact angle measurement instrument. The corrosion and fouling behaviors of different surfaces were studied in simulated cooling water. The polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the electrochemical properties. The results showed that USRP-treated surfaces had better anti-corrosion and anti-fouling performance. The improvement in anti-fouling performance was attributed to the weakening of peaks and valleys, the reduction of surface defects, and the improvement of corrosion resistance
    corecore