12 research outputs found

    A Novel Schizophrenia Diagnostic Model Based on Statistically Significant Changes in Gene Methylation in Specific Brain Regions

    No full text
    Objective. The present study identified methylation patterns of schizophrenia- (SCZ-) related genes in different brain regions and used them to construct a novel DNA methylation-based SCZ diagnostic model. Methods. Four DNA methylation datasets representing different brain regions were downloaded from the Gene Expression Omnibus. The common differentially methylated genes (CDMGs) in all datasets were identified to perform functional enrichment analysis. The differential methylation sites of 10 CDMGs involved in the largest numbers of neurological or psychiatric-related biological processes were used to construct a DNA methylation-based diagnostic model for SCZ in the respective datasets. Results. A total of 849 CDMGs were identified in the four datasets, but the methylation sites as well as degree of methylation differed across the brain regions. Functional enrichment analysis showed CDMGs were significantly involved in biological processes associated with neuronal axon development, intercellular adhesion, and cell morphology changes and, specifically, in PI3K-Akt, AMPK, and MAPK signaling pathways. Four DNA methylation-based classifiers for diagnosing SCZ were constructed in the four datasets, respectively. The sample recognition efficiency of the classifiers showed an area under the receiver operating characteristic curve of 1.00 in three datasets and >0.9 in one dataset. Conclusion. DNA methylation patterns in SCZ vary across different brain regions, which may be a useful epigenetic characteristic for diagnosing SCZ. Our novel model based on SCZ-gene methylation shows promising diagnostic power

    A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule

    No full text
    Anomalous solid-like liquids at the solid–liquid interface have been recently reported. The mechanistic factors contributing to these anomalous liquids and whether they can stably exist at high vacuum are interesting, yet unexplored, questions. In this paper, thin slices of silica tubes soaked in hexadecane were observed under a transmission electron microscope at room temperature. The H-spectrum of hexadecane in the microtubules was measured by nuclear magnetic resonance. On the interior surface of these silica tubes, 0.2–30 μm in inside diameter (ID), a layer (12–400 nm) of a type of non-volatile hexadecane was found with thickness inversely correlated with the tube ID. A sample of this anomalous hexadecane in microtubules 0.4 μm in ID was found to be formable by an ion beam. Compared with the nuclear magnetic resonance H-spectroscopy of conventional hexadecane, the characteristic peaks of this abnormal hexadecane were shifted to the high field with a broader characteristic peak, nuclear magnetic resonance hydrogen spectroscopy spectral features typical of that of solids. The surface density of these abnormal hexadecanes was found to be positively correlated with the silanol groups found on the interior silica microtubular surface. This positive correlation indicates that the high-density aggregation of silanol is an essential factor for forming the abnormal hexadecane reported in this paper

    Identification of Key Differentially Expressed Transcription Factors in Glioblastoma

    No full text
    Glioblastoma (GBM) is the most frequent malignant brain tumor in adults. Our study focused on uncovering differentially expressed genes (DEGs) and their methylation in order to identify novel diagnostic biomarkers and potential treatment targets. Using GBM RNA-sequencing data from The Cancer Genome Atlas (TCGA) database, DEGs between GBM samples and paracancer tissue samples were analyzed. Enrichment analysis for DEGs and transcription factors (TFs) was performed. A total of 1029 upregulated genes and 1542 downregulated genes were identified, which were associated mainly with multiple tumor-related and immune-related pathways such as cell cycle, mitogen-activated protein kinase signaling pathway, leukocyte transendothelial migration, and autoimmune thyroid disease. These DEGs were enriched for 174 TFs, and six TFs were differentially expressed and identified as key TFs in GBM: HOXA3, EN1, ZIC1, and FOXD3 were upregulated, while HLF and EGR3 were downregulated. A total of 1978 DEGs were involved in the regulatory networks of the six key differentially expressed TFs. High expression of EN1 was associated with shorter overall survival, while high expression of EGR3 was associated with shorter recurrence-free survival. The six TFs were differentially methylated in GBM samples compared with paracancer tissues. Our study identifies numerous DEGs and their associated pathways as potential contributors to GBM, particularly the TFs EN1, EGR3, HOXA3, ZIC1, FOXD3, and HLF. The differential expression of these TFs may be unlikely driven by aberrant methylation. These TFs may be useful as diagnostic markers and treatment targets in GBM, and EN1 and EGR3 may have predictive prognostic value

    UPLC-MS/MS Method for Simultaneous Determination of Three Major Metabolites of Mequindox in Holothurian

    No full text
    This study developed an ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the detection of three major metabolites of mequindox, including 3-methyl-quinoxaline-2-carboxylic acid, 1-desoxymequindox, and 1,4-bisdesoxymequindox (MQCA, 1-DMEQ, and BDMEQ), in holothurian. Target analytes were simplified with ultrasound-assisted acidolysis extracted without complicated enzymolysis steps. After that, each sample was centrifuged and purified by an Oasis MAX cartridge. Then, the processed samples were separated and monitored by UPLC-MS/MS. This developed method has been validated according to FDA criteria. At fortified levels of 2, 10, and 20 μg/kg, recoveries ranged from 82.5% to 93.5% with the intraday RSD less than 7.27% and interday RSD less than 11.8%. The limit of detection (LOD) of all the three metabolites ranged from 0.21 to 0.48 μg/kg, while the limit of quantification (LOQ) ranged from 0.79 to 1.59 μg/kg. On application to commercial samples, 14 of 20 samples were detected positive for the three target analytes, with positive rate at 70 percentage. The result indicated that this method was specific, sensitive, and suitable for the quantification and conformation of the three major metabolites of MEQ in holothurian

    AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head

    No full text
    Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Despite the recent success, current LLMs are not capable of processing complex audio information or conducting spoken conversations (like Siri or Alexa). In this work, we propose a multi-modal AI system named AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to process complex audio information and solve numerous understanding and generation tasks; and 2) the input/output interface (ASR, TTS) to support spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of human intention understanding and cooperation with foundation models, we outline the principles and processes and test AudioGPT in terms of consistency, capability, and robustness. Experimental results demonstrate the capabilities of AudioGPT in solving 16 AI tasks with speech, music, sound, and talking head understanding and generation in multi-round dialogues, which empower humans to create rich and diverse audio content with unprecedented ease. Code can be found in https://github.com/AIGC-Audio/AudioGP

    Iodine-assisted ultrafast growth of high-quality monolayer MoS

    No full text
    Two-dimensional (2D) semiconductors have attracted great attention to extend Moore’s law, which motivates the quest for fast growth of high-quality materials. However, taking MoS2 as an example, current methods yield 2D MoS2 with a low growth rate and poor quality with vacancy concentrations three to five orders of magnitude higher than silicon and other commercial semiconductors. Here, we develop a strategy of using an intermediate product of iodine as a transport agent to carry metal precursors efficiently for ultrafast growth of high-quality MoS2. The grown MoS2 has the lowest density of sulfur vacancies (~1.41×1012 cm−2) reported so far and excellent electrical properties with high on/off current ratios of 108 and carrier mobility of 175 cm2 V−1 s−1. Theoretical calculations show that by incorporating iodine, the nucleation barrier of MoS2 growth with sulfur-terminated edges reduces dramatically. The sufficient supply of precursor and low nucleation energy together boost the ultrafast growth of sub-millimeter MoS2 domains within seconds. This work provides an effective method for the ultrafast growth of 2D semiconductors with high quality, which will promote their applications

    Iodine-assisted ultrafast growth of high-quality monolayer MoS<sub>2</sub> with sulfur-terminated edges

    No full text
    Two-dimensional (2D) semiconductors have attracted great attention to extend Moore’s law, which motivates the quest for fast growth of high-quality materials. However, taking MoS2 as an example, current methods yield 2D MoS2 with a low growth rate and poor quality with vacancy concentrations three to five orders of magnitude higher than silicon and other commercial semiconductors. Here, we develop a strategy of using an intermediate product of iodine as a transport agent to carry metal precursors efficiently for ultrafast growth of high-quality MoS2. The grown MoS2 has the lowest density of sulfur vacancies (~1.41×1012 cm−2) reported so far and excellent electrical properties with high on/off current ratios of 108 and carrier mobility of 175 cm2 V−1 s−1. Theoretical calculations show that by incorporating iodine, the nucleation barrier of MoS2 growth with sulfur-terminated edges reduces dramatically. The sufficient supply of precursor and low nucleation energy together boost the ultrafast growth of sub-millimeter MoS2 domains within seconds. This work provides an effective method for the ultrafast growth of 2D semiconductors with high quality, which will promote their applications.</p
    corecore