5 research outputs found
Terahertz Single-Pixel Imaging Improved by Using Silicon Wafer with SiO2 Passivation
We demonstrate terahertz single-pixel imaging is improved by using a photomodulator based on silicon passivated with SiO 2 . By exploring various SiO 2 thicknesses, we show that the modulation factor of the as-fabricated terahertz photomodulator can reach 0.9, three times that based on bare silicon. This improvement originates from chemical passivation, as well as anti-reflection. Single-pixel imaging experiments based on the compressed sensing method show that reconstructed images adopting the new photomodulator have better quality than the conventional terahertz modulator based on bare silicon. Since the passivation process is routine and low cost, we expect this work will reduce the cost of terahertz photomodulator and single-pixel THz imaging, and advance their applications
Single-Pixel Imaging Based on Deep Learning Enhanced Singular Value Decomposition
We propose and demonstrate a single-pixel imaging method based on deep learning network enhanced singular value decomposition. The theoretical framework and the experimental implementation are elaborated and compared with the conventional methods based on Hadamard patterns or deep convolutional autoencoder network. Simulation and experimental results show that the proposed approach is capable of reconstructing images with better quality especially under a low sampling ratio down to 3.12%, or with fewer measurements or shorter acquisition time if the image quality is given. We further demonstrate that it has better anti-noise performance by introducing noises in the SPI systems, and we show that it has better generalizability by applying the systems to targets outside the training dataset. We expect that the developed method will find potential applications based on single-pixel imaging beyond the visible regime
Thermal Analysis of Cornea Heated with Terahertz Radiation
We numerically investigate the thermal effects in a cornea illuminated by terahertz radiation. By modifying the bioheat and Arrhenius equations, we studied the heat-transfer and temperature distributions in the corneal tissue, and evaluated the potential thermal damage. The influence of the beam radius and power density are discussed. We also estimated the effective cornea-collagen shrinkage region, and evaluated the degree of thermal damage in the cornea. We expect this work to open up a novel effective and safe thermal-treatment approach based on THz radiation for cornea reshaping in the field of ophthalmology