55 research outputs found

    Pets or Pest: Peritoneal Dialysis-related Peritonitis due to Pasteurella multocida

    Get PDF
    Pasteurella multocida is a Gram-negative bacteria found in the oropharynx of many domestic animals. P. multocida can cause a variety of human infections, but it remains a rare cause of peritoneal dialysis-related peritonitis. We describe a severe case of peritoneal dialysis-related peritonitis due to P. multocida infection caused by close contact with a cat

    Electrolyte and Acid-Base Disorders in the Renal Transplant Recipient

    Get PDF
    Kidney transplantation is the current treatment of choice for patients with end-stage renal disease. Innovations in transplantation and immunosuppression regimens have greatly improved the renal allograft survival. Based on recently published data from the Scientific Registry of Transplant recipients, prevalence of kidney transplants is steadily rising in the United States. Over 210,000 kidney transplant recipients were alive with a functioning graft in mid-2016, which is nearly twice as many as in 2005. While successful renal transplantation corrects most of the electrolyte and mineral abnormalities seen in advanced renal failure, the abnormalities seen in the post-transplant period are surprisingly different from those seen in chronic kidney disease. Multiple factors contribute to the high prevalence of these abnormalities that include level of allograft function, use of immunosuppressive medications and metabolic changes in the post-transplant period. Electrolyte disturbances are common in patients after renal transplantation, and several studies have tried to determine the clinical significance of these disturbances. In this manuscript we review the key aspects of the most commonly found post-transplant electrolyte abnormalities. We focus on their epidemiology, pathophysiology, clinical manifestations, and available treatment approaches

    Hypertonicity: Pathophysiologic Concept and Experimental Studies

    Get PDF
    Disturbances in tonicity (effective osmolarity) are the major clinical disorders affecting cell volume. Cell shrinking secondary to hypertonicity causes severe clinical manifestations and even death. Quantitative management of hypertonic disorders is based on formulas computing the volume of hypotonic fluids required to correct a given level of hypertonicity. These formulas have limitations. The major limitation of the predictive formulas is that they represent closed system calculations and have been tested in anuric animals. Consequently, the formulas do not account for ongoing fluid losses during development or treatment of the hypertonic disorders. In addition, early comparisons of serum osmolality changes predicted by these formulas and observed in animals infused with hypertonic solutions clearly demonstrated that hypertonicity creates new intracellular solutes causing rises in serum osmolality higher than those predicted by the formulas. The mechanisms and types of intracellular solutes generated by hypertonicity and the effects of the solutes have been studied extensively in recent times. The solutes accumulated intracellularly in hypertonic states have potentially major adverse effects on the outcomes of treatment of these states. When hypertonicity was produced by the infusion of hypertonic sodium chloride solutions, the predicted and observed changes in serum sodium concentration were equal. This finding justifies the use of the predictive formulas in the management of hypernatremic states

    Fluid balance concepts in medicine: Principles and practice.

    Get PDF
    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance

    Predicting restoration of kidney function during CRRT-free intervals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal failure is common in critically ill patients and frequently requires continuous renal replacement therapy (CRRT). CRRT is discontinued at regular intervals for routine changes of the disposable equipment or for replacing clogged filter membrane assemblies. The present study was conducted to determine if the necessity to continue CRRT could be predicted during the CRRT-free period.</p> <p>Materials and methods</p> <p>In the period from 2003 to 2006, 605 patients were treated with CRRT in our ICU. A total of 222 patients with 448 CRRT-free intervals had complete data sets and were used for analysis. Of the total CRRT-free periods, 225 served as an evaluation group. Twenty-nine parameters with an assumed influence on kidney function were analyzed with regard to their potential to predict the restoration of kidney function during the CRRT-free interval. Using univariate analysis and logistic regression, a prospective index was developed and validated in the remaining 223 CRRT-free periods to establish its prognostic strength.</p> <p>Results</p> <p>Only three parameters showed an independent influence on the restoration of kidney function during CRRT-free intervals: the number of previous CRRT cycles (medians in the two outcome groups: 1 vs. 2), the "Sequential Organ Failure Assessment"-score (means in the two outcome groups: 8.3 vs. 9.2) and urinary output after the cessation of CRRT (medians in two outcome groups: 66 ml/h vs. 10 ml/h). The prognostic index, which was calculated from these three variables, showed a satisfactory potential to predict the kidney function during the CRRT-free intervals; Receiver operating characteristic (ROC) analysis revealed an area under the curve of 0.798.</p> <p>Conclusion</p> <p>Restoration of kidney function during CRRT-free periods can be predicted with an index calculated from three variables. Prospective trials in other hospitals must clarify whether our results are generally transferable to other patient populations.</p

    Therapeutic Relowering of Plasma Sodium after Overly Rapid Correction of Hyponatremia

    No full text

    Vasopressin Receptor Antagonists in Hyponatremia: Uses and Misuses

    No full text
    Decreases in the concentration of sodium in plasma constitute hyponatremia, the commonest electrolyte disorder in clinical medicine. It is now well established that its presence conveys an increased mortality risk even when the decrement is mild. In addition, recent evidence suggests that chronic and apparently asymptomatic hyponatremia is associated with increased morbidity including neurocognitive deficits and bone fractures. Furthermore, hyponatremia is associated with higher health care-related expenses. Consequently, exploring new therapeutic strategies that increase plasma sodium in a safe and effective manner is of paramount importance. In this regard, there are scant data to support the use of traditional management strategies for hyponatremia (fluid restriction, salt tablets, loop diuretics, and normal saline). Furthermore, data from a large hyponatremia registry reveal the limited efficacy of these therapies. More recently vasopressin receptor antagonists provide a promising treatment for hyponatremia by targeting its most common mechanism, namely, increased vasopressin activity. However, uncertainty still lingers as to the optimal indications for the use of vasopressin receptor antagonists in hyponatremia and a few reports have described complications resulting from their misuse. This review summarizes the appropriate and inappropriate uses of vasopressin receptor antagonists in the treatment of hyponatremia

    Hypertonic Saline for Hyponatremia: Meeting Goals and Avoiding Harm

    No full text
    Hypertonic saline has been used for the treatment of hyponatremia for nearly a century. There is now general consensus that hypertonic saline should be used in patients with hyponatremia associated with moderate or severe symptoms to prevent neurological complications. However, much less agreement exists among experts regarding other aspects of its use. Should hypertonic saline be administered as a bolus injection or continuous infusion? What is the appropriate dose? Is a central venous line necessary? Should desmopressin be used concomitantly and for how long? This article considers these important questions, briefly explores the historical origins of hypertonic saline use for hyponatremia, and reviews recent evidence behind its indications, dosing, administration modality and route, combined use with desmopressin to prevent rapid correction of serum sodium, and other considerations such as the need and degree for fluid restriction. The authors conclude by offering some practical recommendations for the use of hypertonic saline

    Hyponatremia in the cancer patient.

    No full text
    Hyponatremia is a common electrolyte disorder observed in a wide variety of malignancies and is associated with substantial morbidity and mortality. Newer cancer therapies have improved patient outcomes while also contributing to new cases of hyponatremia. Patients should be monitored closely for the development of vasopressin and non-vasopressin mediated hyponatremia. Acute and symptomatic forms of hyponatremia require urgent intervention, and recent findings also support the correction of chronic asymptomatic hyponatremia. Optimizing hyponatremia may reduce medical costs, improve cancer survival, and quality of life. In this manuscript, we review the epidemiology, pathophysiology, etiology, diagnosis and treatment of hyponatremia in the cancer patient

    Can Muscle-Kidney Crosstalk Slow Progression of CKD?

    No full text
    corecore