2 research outputs found

    Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications

    Get PDF
    : Antimicrobial resistance related to the misuse of antibiotics is a well-known current topic. Their excessive use in several fields has led to enormous selective pressure on pathogenic and commensal bacteria, driving the evolution of antimicrobial resistance genes with severe impacts on human health. Among all the possible strategies, a viable one could be the development of medical features that employ essential oils (EOs), complex natural mixtures extracted from different plant organs, rich in organic compounds showing, among others, antiseptic properties. In this work, green extracted essential oil of Thymus vulgaris was included in cyclic oligosaccharides cyclodextrins (CD) and prepared in the form of tablets. This essential oil has been shown to have a strong transversal efficacy both as an antifungal and as an antibacterial agent. Its inclusion allows its effective use because an extension of the exposure time to the active compounds is obtained and, therefore, a more marked efficacy, especially against biofilm-producing microorganisms such as P. aeruginosa and S. aureus, was registered. The efficacy of the tablet against candidiasis opens their possible use as a chewable tablet against oral candidiasis and as a vaginal tablet against vaginal candidiasis. Moreover, the registered wide efficacy is even more positive since the proposed approach can be defined as effective, safe, and green. In fact, the natural mixture of the essential oil is produced by the steam current method; therefore, the manufacturer employs substances that are not harmful, with very low production and management costs

    Extracts from Cabbage Leaves: Preliminary Results towards a "Universal" Highly-Performant Antibacterial and Antifungal Natural Mixture

    No full text
    Simple Summary The large antibiotic consumption in the clinical, veterinary, and agricultural fields has resulted in a tremendous flow of antibiotics into the environment. This has led to enormous selective pressures driving the evolution of antimicrobial resistance in bacteria and yeasts. For this reason, the World Health Organization is promoting research to discover new natural products competitive with synthetic drugs in clinical performances. Compared with conventional drugs, the production of natural pharmaceuticals often has a lower environmental impact and lower economic costs of processes, especially when they originate from agricultural wastes. In the context of a circular economy, we aimed to successfully present preliminary results for the valorization of agricultural waste produced in cabbage cultivation by isolating a highly performant antibacterial and antifungal lipophilic natural mixture from cabbage leaves. As dramatically experienced in the recent world pandemic, viral, bacterial, fungal pathogens constitute very serious concerns in the global context of human health. Regarding this issue, the World Health Organization has promoted research studies that aim to develop new strategies using natural products. Although they are often competitive with synthetic pharmaceuticales in clinical performance, they lack their critical drawbacks, i.e., the environmental impact and the high economic costs of processing. In this paper, the isolation of a highly performant antibacterial and antifungal lipophilic natural mixture from leaves of savoy and white cabbages is proposed as successful preliminary results for the valorization of agricultural waste produced in cabbage cultivation. The fraction was chemically extracted from vegetables with diethyl ether and tested against two Candida species, as well as Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus reference strains. All the different fractions (active and not active) were chemically characterized by vibrational FT-IR spectroscopy and GC-MS analyses. The extracts showed high growth-inhibition performance on pathogens, thus demonstrating strong application potential. We think that this work, despite being at a preliminary stage, is very promising, both from pharmaceutical and industrial points of view, and can be proposed as a proof of concept for the recovery of agricultural production wastes
    corecore