26 research outputs found

    Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency.</p> <p>Results</p> <p>Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression.</p> <p>Conclusion</p> <p>Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the unsubstituted parent gemini surfactant. Glycyl-lysine substitution in the gemini spacer improved buffering capacity and imparted a pH-dependent increase of particle size. This property conferred to the P/12-7NGK-12/L nanoparticles the ability to escape efficiently from clathrin-mediated endosomes. Balanced binding properties (protection and release) of the 12-7NGK-12 in the presence of polyanions could contribute to the facile release of the nanoparticles internalized via caveolae-mediated uptake. A more efficient endosomal escape of the P/12-7NGK-12/L nanoparticles lead to higher gene expression compared to the parent gemini surfactant.</p

    Design and Evaluation of Gemini Surfactant-Based Lipoplexes Modified with Cell-Binding Peptide for Targeted Gene Therapy

    Get PDF
    Purpose Achieving successful gene therapy requires delivery of a gene vector specifically to the targeted tissue with efficient expression and a good safety profile. The objective of this work was to develop, characterize and determine if a novel gemini surfactant-based lipoplex systems, modified with a cancer-targeting peptide p18-4, could serve this role. Methods The targeting peptide p18-4 was either chemically coupled to a gemini surfactant backbone or physically co-formulated with the lipoplexes. The influence of targeting ligand and formulation strategies on essential physicochemical properties of the lipoplexes was evaluated by dynamic light scattering and small angle X-ray scattering techniques. In vitro transfection activity and cellular toxicity of lipoplexes were assessed in a model human melanoma cell line. Results All lipoplexes zeta potential and particle size were optimal for cellular uptake and physical stability of the system. The lipoplexes adopted an inverted-hexagonal lipid arrangement. The lipoplexes modified with the peptide showed no significant changes in physicochemical properties or lipoplex assembly. The modification of the lipoplexes with the targeting peptide significantly enhanced protein expression 2-6 fold compared to non-modified lipoplexes. In addition, p18-4 modified lipoplexes significantly improved the safety of the lipoplexes. The ability of the p18-4 modified lipoplexes to selectively express the model protein was confirmed by using healthy human epidermal keratinocytes (HEKa). Conclusion The gemini surfactant-based lipoplexes modified with p18-4 peptide showed significantly higher efficiency and safety compared to the system that did not contain a cancer targeting peptide and provided evidence for their potential application to achieve targeted melanoma gene therapy

    Interactions between 12-EO x

    No full text
    corecore