10 research outputs found

    Validation of Automated Data Abstraction for SCCM Discovery VIRUS COVID-19 Registry: Practical EHR Export Pathways (VIRUS-PEEP)

    Get PDF
    BACKGROUND: The gold standard for gathering data from electronic health records (EHR) has been manual data extraction; however, this requires vast resources and personnel. Automation of this process reduces resource burdens and expands research opportunities. OBJECTIVE: This study aimed to determine the feasibility and reliability of automated data extraction in a large registry of adult COVID-19 patients. MATERIALS AND METHODS: This observational study included data from sites participating in the SCCM Discovery VIRUS COVID-19 registry. Important demographic, comorbidity, and outcome variables were chosen for manual and automated extraction for the feasibility dataset. We quantified the degree of agreement with Cohen\u27s kappa statistics for categorical variables. The sensitivity and specificity were also assessed. Correlations for continuous variables were assessed with Pearson\u27s correlation coefficient and Bland-Altman plots. The strength of agreement was defined as almost perfect (0.81-1.00), substantial (0.61-0.80), and moderate (0.41-0.60) based on kappa statistics. Pearson correlations were classified as trivial (0.00-0.30), low (0.30-0.50), moderate (0.50-0.70), high (0.70-0.90), and extremely high (0.90-1.00). MEASUREMENTS AND MAIN RESULTS: The cohort included 652 patients from 11 sites. The agreement between manual and automated extraction for categorical variables was almost perfect in 13 (72.2%) variables (Race, Ethnicity, Sex, Coronary Artery Disease, Hypertension, Congestive Heart Failure, Asthma, Diabetes Mellitus, ICU admission rate, IMV rate, HFNC rate, ICU and Hospital Discharge Status), and substantial in five (27.8%) (COPD, CKD, Dyslipidemia/Hyperlipidemia, NIMV, and ECMO rate). The correlations were extremely high in three (42.9%) variables (age, weight, and hospital LOS) and high in four (57.1%) of the continuous variables (Height, Days to ICU admission, ICU LOS, and IMV days). The average sensitivity and specificity for the categorical data were 90.7 and 96.9%. CONCLUSION AND RELEVANCE: Our study confirms the feasibility and validity of an automated process to gather data from the EHR

    Validation of automated data abstraction for SCCM discovery VIRUS COVID-19 registry: practical EHR export pathways (VIRUS-PEEP)

    Get PDF
    BackgroundThe gold standard for gathering data from electronic health records (EHR) has been manual data extraction; however, this requires vast resources and personnel. Automation of this process reduces resource burdens and expands research opportunities.ObjectiveThis study aimed to determine the feasibility and reliability of automated data extraction in a large registry of adult COVID-19 patients.Materials and methodsThis observational study included data from sites participating in the SCCM Discovery VIRUS COVID-19 registry. Important demographic, comorbidity, and outcome variables were chosen for manual and automated extraction for the feasibility dataset. We quantified the degree of agreement with Cohen’s kappa statistics for categorical variables. The sensitivity and specificity were also assessed. Correlations for continuous variables were assessed with Pearson’s correlation coefficient and Bland–Altman plots. The strength of agreement was defined as almost perfect (0.81–1.00), substantial (0.61–0.80), and moderate (0.41–0.60) based on kappa statistics. Pearson correlations were classified as trivial (0.00–0.30), low (0.30–0.50), moderate (0.50–0.70), high (0.70–0.90), and extremely high (0.90–1.00).Measurements and main resultsThe cohort included 652 patients from 11 sites. The agreement between manual and automated extraction for categorical variables was almost perfect in 13 (72.2%) variables (Race, Ethnicity, Sex, Coronary Artery Disease, Hypertension, Congestive Heart Failure, Asthma, Diabetes Mellitus, ICU admission rate, IMV rate, HFNC rate, ICU and Hospital Discharge Status), and substantial in five (27.8%) (COPD, CKD, Dyslipidemia/Hyperlipidemia, NIMV, and ECMO rate). The correlations were extremely high in three (42.9%) variables (age, weight, and hospital LOS) and high in four (57.1%) of the continuous variables (Height, Days to ICU admission, ICU LOS, and IMV days). The average sensitivity and specificity for the categorical data were 90.7 and 96.9%.Conclusion and relevanceOur study confirms the feasibility and validity of an automated process to gather data from the EHR

    High PEEP extubation as guided by esophageal manometry

    No full text
    The ventilatory management of morbidly obese patients presents an ongoing challenge in the Intensive Care Unit (ICU) as multiple physiologic changes in the respiratory system complicate weaning efforts and make extubation more difficult, often leading to increased time on the ventilator. We report the case of a young adult male who presented to our ICU on two separate occasions with hypoxemic respiratory failure requiring intubation. Esophageal manometry (EM) guided positive end expiratory pressure (PEEP) titration was utilized during both ICU admissions to improve oxygenation and aid in extubation with spontaneous breathing trials performed on higher-than-normal PEEP settings and successful liberation on both occasions

    Patient Outcomes and Unit Composition With Transition to a High-Intensity ICU Staffing Model: A Before-and-After Study

    No full text
    IMPORTANCE:. Provider staffing models for ICUs are generally based on pragmatic necessities and historical norms at individual institutions. A better understanding of the role that provider staffing models play in determining patient outcomes and optimizing use of ICU resources is needed. OBJECTIVES:. To explore the impact of transitioning from a low- to high-intensity intensivist staffing model on patient outcomes and unit composition. DESIGN, SETTING, AND PARTICIPANTS:. This was a prospective observational before-and-after study of adult ICU patients admitted to a single community hospital ICU before (October 2016–May 2017) and after (June 2017–November 2017) the transition to a high-intensity ICU staffing model. MAIN OUTCOMES AND MEASURES:. The primary outcome was 30-day all-cause mortality. Secondary outcomes included in-hospital mortality, ICU length of stay (LOS), and unit composition characteristics including type (e.g., medical, surgical) and purpose (ICU-specific intervention vs close monitoring only) of admission. RESULTS:. For the primary outcome, 1,219 subjects were included (779 low-intensity, 440 high-intensity). In multivariable analysis, the transition to a high-intensity staffing model was not associated with a decrease in 30-day (odds ratio [OR], 0.90; 95% CI, 0.61–1.34; p = 0.62) or in-hospital (OR, 0.89; 95% CI, 0.57–1.38; p = 0.60) mortality, nor ICU LOS. However, the proportion of patients admitted to the ICU without an ICU-specific need did decrease under the high-intensity staffing model (27.2% low-intensity to 17.5% high-intensity; p < 0.001). CONCLUSIONS AND RELEVANCE:. Multivariable analysis showed no association between transition to a high-intensity ICU staffing model and mortality or LOS outcomes; however, the proportion of patients admitted without an ICU-specific need decreased under the high-intensity model. Further research is needed to determine whether a high-intensity staffing model may lead to more efficient ICU bed usage

    A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19

    No full text
    Background: The SARS-CoV-2 virus enters cells via Angiotensin-converting enzyme 2 (ACE2), disrupting the renin-angiotensin-aldosterone axis, potentially contributing to lung injury. Treatment with angiotensin receptor blockers (ARBs), such as losartan, may mitigate these effects, though induction of ACE2 could increase viral entry, replication, and worsen disease. Methods: This study represents a placebo-controlled blinded randomized clinical trial (RCT) to test the efficacy of losartan on outpatients with COVID-19 across three hospital systems with numerous community sites in Minnesota, U.S. Participants included symptomatic outpatients with COVID-19 not already taking ACE-inhibitors or ARBs, enrolled within 7 days of symptom onset. Patients were randomized to 1:1 losartan (25 mg orally twice daily unless estimated glomerular filtration rate, eGFR, was reduced, when dosing was reduced to once daily) versus placebo for 10 days, and all patients and outcome assesors were blinded. The primary outcome was all-cause hospitalization within 15 days. Secondary outcomes included functional status, dyspnea, temperature, and viral load. (clinicatrials.gov, NCT04311177, closed to new participants) Findings: From April to November 2020, 117 participants were randomized 58 to losartan and 59 to placebo, and all were analyzed under intent to treat principles. The primary outcome did not differ significantly between the two arms based on Barnard's test [losartan arm: 3 events (5.2% 95% CI 1.1, 14.4%) versus placebo arm: 1 event (1.7%; 95% CI 0.0, 9.1%)]; proportion difference -3.5% (95% CI -13.2, 4.8%); p = 0.32]. Viral loads were not statistically different between treatment groups at any time point. Adverse events per 10 patient days did not differ signifcantly [0.33 (95% CI 0.22–0.49) for losartan vs. 0.37 (95% CI 0.25–0.55) for placebo]. Due to a lower than expected hospitalization rate and low likelihood of a clinically important treatment effect, the trial was terminated early. Interpretation: In this multicenter blinded RCT for outpatients with mild symptomatic COVID-19 disease, losartan did not reduce hospitalizations, though assessment was limited by low event rate. Importantly, viral load was not statistically affected by treatment. This study does not support initiation of losartan for low-risk outpatients. Funding: This study was supported by Minnesota Partnership for Biotechnology and Medical Genomics (CON000000076883)
    corecore