75 research outputs found

    Bioreactors for Decreasing the Growth of Brain Tumors

    Get PDF
    Malignant gliomas are the most common primary brain tumors. They are highly aggressive tumors characterized by a recurrence rate of virtually 100%. Despite significant advances in neuroimaging and neurosurgical techniques, the median survival time of patients with glioblastoma multiforme remains 12 to 18 months. Malignant gliomas are characterized by rapidly dividing cells, which invade into the normal brain, and a high degree of vascularity. Recent experimental evidence indicates that tumor-related angiogenesis contributes significantly to the malignant phenotype

    Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus

    Get PDF
    The diagnosis of idiopathic normal pressure hydrocephalus (iNPH) is still challenging. Alzheimer's disease (AD), along with vascular dementia, the most important differential diagnosis for iNPH, has several potential cerebrospinal fluid (CSF) biomarkers which might help in the selection of patients for shunt treatment. The aim of this study was to compare a battery of CSF biomarkers including well-known AD-related proteins with CSF from patients with suspected iNPH collected from the external lumbar drainage test (ELD). A total of 35 patients with suspected iNPH patients were evaluated with ELD. CSF was collected in the beginning of the test, and the concentrations of total tau, ptau181, Aβ42, NFL, TNF-α, TGFβ1, and VEGF were analysed by ELISA. Twenty-six patients had a positive ELD result—that is, their gait symptoms improved; 9 patients had negative ELD. The levels of all analyzed CSF biomarkers were similar between the groups and none of them predicted the ELD result in these patients. Contrary to expectations lumbar CSF TNF-α concentration was low in iNPH patients

    Increased plasmin-mediated proteolysis of L1CAM in a mouse model of idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone

    Deletions in CWH43 cause idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder that occurs in about 1% of individuals over age 60 and is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and cognitive decline. The cause and pathophysiology of iNPH are largely unknown. We performed whole exome sequencing of DNA obtained from 53 unrelated iNPH patients. Two recurrent heterozygous loss of function deletions in CWH43 were observed in 15% of iNPH patients and were significantly enriched 6.6-fold and 2.7-fold, respectively, when compared to the general population. Cwh43 modifies the lipid anchor of glycosylphosphatidylinositol-anchored proteins. Mice heterozygous for CWH43 deletion appeared grossly normal but displayed hydrocephalus, gait and balance abnormalities, decreased numbers of ependymal cilia, and decreased localization of glycosylphosphatidylinositol-anchored proteins to the apical surfaces of choroid plexus and ependymal cells. Our findings provide novel mechanistic insights into the origins of iNPH and demonstrate that it represents a distinct disease entity

    SNAI2/Slug promotes growth and invasion in human gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known.</p> <p>Methods</p> <p>To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer.</p> <p>Results</p> <p>Using this approach, we identified the oncogenic transcriptional repressor, <it>SNAI2</it>/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. <it>SNAI2 </it>mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of <it>SNAI2/</it>Slug increased glioblastoma cell proliferation and invasion <it>in vitro </it>and promoted angiogenesis and glioblastoma growth <it>in vivo</it>. Importantly, knockdown of endogenous <it>SNAI2</it>/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model.</p> <p>Conclusion</p> <p>This genome-scale approach has thus identified <it>SNAI2</it>/Slug as a regulator of growth and invasion in human gliomas.</p

    Reproductive Hormone-Dependent and -Independent Contributions to Developmental Changes in Kisspeptin in GnRH-Deficient Hypogonadal Mice

    Get PDF
    Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty

    miR-505 Downregulates 6-Phosphofructo-2-Kinase/ Fructose-2,6-Biphosphatase 4 to Promote Cell Death in Glioblastoma

    No full text
    Aim: The glycolytic enzyme, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), mediates shifts in glycolytic flux and is important for glioblastoma cell survival. This study aimed to identify micro-RNAs that alter PFKFB4 expression to regulate glioblastoma cell survival. Methods: Western blot analyses, luciferase reporter assays, and public database analyses were used to predict and validate the regulation of PFKFB4 mRNA expression by miR-505 in glioblastoma. Cell growth and apoptosis assays were performed to determine the effects of miR-505 on the growth and survival of primary glioblastoma stem-like cells (GSCs) and established glioblastoma cell lines. In addition, the correlations between patient survival and the expression of miR-505 and PFKFB4 mRNA in glioblastoma specimens were examined. Results: Using micro-RNA target prediction programs, a miR-505 binding site in the 3'-UTR of the PFKFB4 mRNA transcript was identified, and query of a public CLIP-Seq database indicated that PFKFB4 binds this site in living cells. It was found that fusion of the PFKFB4 3'-UTR to luciferase conferred regulation of luciferase activity by PFKFB4. In addition, Western blots revealed that miR-505 significantly decreased PFKFB4 protein expression in established glioblastoma cell lines and primary GSCs. Enforced PFKFB4 overexpression increased the growth of primary GSCs and established glioblastoma multiforme cell lines, and miR-505 antagonized this effect. By downregulating PFKFB4, miR-505 increased production of reactive oxygen species, thereby repressing glioblastoma cell growth and promoting glioblastoma cell death. Importantly, patient survival was positively correlated with miR-505 expression and negatively correlated with PFKFB4 mRNA expression in primary glioblastoma specimens. Conclusion: It was showed that miR-505 downregulates PFKFB4 expression in glioblastoma, thereby decreasing glioblastoma cell survival. Targeting PFKFB4 via miR-505 may represent a promising therapeutic approach in glioblastoma

    Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints

    No full text
    Glioblastoma multiforme is the most lethal intrinsic brain tumor. Even with the existing treatment regimen of surgery, radiation, and chemotherapy, the median survival time is only 15&ndash;23 months. The invasive nature of this tumor makes its complete removal very difficult, leading to a high recurrence rate of over 90%. Drug delivery to glioblastoma is challenging because of the molecular and cellular heterogeneity of the tumor, its infiltrative nature, and the blood&ndash;brain barrier. Understanding the critical characteristics that restrict drug delivery to the tumor is necessary to develop platforms for the enhanced delivery of effective treatments. In this review, we address the impact of tumor invasion, the molecular and cellular heterogeneity of the tumor, and the blood&ndash;brain barrier on the delivery and distribution of drugs using potential therapeutic delivery options such as convection-enhanced delivery, controlled release systems, nanomaterial systems, peptide-based systems, and focused ultrasound

    Frequency-Dependent Regulation of Follicle-Stimulating Hormone β by Pulsatile Gonadotropin-Releasing Hormone Is Mediated by Functional Antagonism of bZIP Transcription Factors ▿

    No full text
    Oscillatory synthesis and secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), under the control of pulsatile hypothalamic gonadotropin-releasing hormone (GnRH), is essential for normal reproductive development and fertility. The molecular mechanisms by which various patterns of pulsatile GnRH regulate gonadotrope responsiveness remain poorly understood. In contrast to the α and LHβ subunit genes, FSHβ subunit transcription is preferentially stimulated at low rather than high frequencies of pulsatile GnRH. In this study, mutation of a cyclic AMP response element (CRE) within the FSHβ promoter resulted in the loss of preferential GnRH stimulation at low pulse frequencies. We hypothesized that high GnRH pulse frequencies might stimulate a transcriptional repressor(s) to attenuate the action of CRE binding protein (CREB) and show that inducible cAMP early repressor (ICER) fulfills such a role. ICER was not detected under basal conditions, but pulsatile GnRH stimulated ICER to a greater extent at high than at low pulse frequencies. ICER binds to the FSHβ CRE site to reduce CREB occupation and abrogates both maximal GnRH stimulation and GnRH pulse frequency-dependent effects on FSHβ transcription. These data suggest that ICER production antagonizes the stimulatory action of CREB to attenuate FSHβ transcription at high GnRH pulse frequencies, thereby playing a critical role in regulating cyclic reproductive function
    corecore