5 research outputs found

    Optimization of cultivation medium for the production of antibacterial agents

    Get PDF
    Optimization of the cultivation medium for production of antibiotic effective against pathogenic bacteria Staphylococcus aureus using strain of Streptomyces spp. isolated from the environment represents the aim of this study. After the biosynthesis, the medium was analyzed by determining residual sugar and nitrogen, and the antibiotic activity was determined using diffusion-disc method. Experiments were carried out in accordance with the Box-Behnken design, with three factors varied on three levels (glucose: 10.0, 30.0 and 50.0 g/L; soybean meal: 5.0, 15.0 and 25.0 g/L; phosphates: 0.5, 1.0 and 1.5 g/L) and for the optimization of selected parameters Response Surface Methodology was used. The obtained model with the desirability function of 0.985 estimates that the lowest amounts of residual sugar (0.89 g/L) and nitrogen (0.24 g/L) and the largest possible inhibition zone diameter (21.88 mm) that with its antibiotic activity against S. aureus creates the medium containing 10.0 g/L glucose, 5.0 g/L soybean meal and 1.04 g/L phosphates

    Effect of the initial glycerol concentration in the medium on the xanthan biosynthesis

    No full text
    This study is concerned with the effect of different initial glycerol concentrations in the medium on xanthan production by Xanthomonas campestris ATCC 13951. Xanthan biosynthesis was carried out in batch mode under aerobic conditions at a temperature of 30oC and agitation rate of 150 rpm for 7 days. The process efficiency was estimated based on the values of raw xanthan yield, average molecular weight of the polymer and residual content of glycerol, total nitrogen and phosphorus. Based on these results, the initial concentration of glycerol as a carbon source in the production medium was suggested. In the applied experimental conditions, high raw xanthan yield (12.15 g/l) of good quality (Mw = 2.86ā€¢105 g/mol) and the lowest amount of residual nutrients (glycerol 2.75 g/l, nitrogen 0.46 g/l and phosphorus 0.67 g/l) was achieved in the medium with the initial glycerol content of 20 g/l. The obtained results are the basis for optimization of xanthan production on glycerol containing media in order to increase the product yield and quality

    The biotechnological production of xanthan on vegetable oil industry wastewaters. Part I: Modelling and optimization

    No full text
    The aim of this research was to examine the possibility of using the vegetable oil industry wastewater as the basis of the cultivation media for xanthan production, using Xanthomonas campestris ATCC 13951, in order to reuse the wastewater obtained in one industry as a raw material in another. Furthermore, the aim was to optimize the composition of wastewater based media in terms of carbon, nitrogen, and phosphorus content. Experiments were carried out in accordance with the Box-Behnken design with three factors on three levels (glucose: 10.00- -30.00 g/L; nitrogen: 0.02-0.20 g/L; phosphorus: 0.0045-0.045 g/L) and three repetitions at the central point. The success of biosynthesis was assessed by analysing broths to determine xanthan yield, cultivation broth apparent viscosity, residual carbon, nitrogen, and phosphorus content. Graphical and numerical optimization using response surface methodology was performed to determine the optimal content values of the carbon source, nitrogen, and phosphorus content. The results of graphical optimization suggest that for the defined response interval values, the defined model predicts that the xanthan production is possible when 15.00-16.00 g/L of the carbon source, 0.02-0.09 g/L of nitrogen and 0.01-0.02 g/L of phosphorus are added to the media that as a basis contains vegetable oil industry wastewater

    The biotechnological production of xanthan on vegetable oil industry wastewaters (part II): Kinetic modelling and process simulation

    No full text
    Xanthan is a microbial biopolymer with a wide range of industrial applications and it is expected that the demand for this product will significantly increase in the coming decade and for this reason it is important to constantly work on improving all aspects of this biotechnological process. The aim of this research was to examine the kinetics of batch cultivation of Xanthomonas campestris ATCC 13951 using vegetable oil industry wastewaters as a basis for the cultivation medium, in order to produce the biopolymer xanthan. Kinetic modelling is very important for process control, reducing process costs and increasing product quality. By performing xanthan production on a medium with optimized content, the experimental values of content of biomass, carbon source and the desired product were obtained and used to determine the kinetics of biosynthesis. In order to describe biomass multiplication, product formation and carbon source consumption, the logistics, the Luedeking-Piret and modified Luedeking- -Piret equation, respectively, were successfully used. Additionally, using process simulation software (SuperPro DesignerĀ®), a process and cost model for a xanthan production facility was developed. The developed model represents the basis for a 21,294.29 and 23,107.97 kg/year xanthan production facility, which uses a vegetable oil industry wastewater-based medium and a semi-synthetic medium. The simulation model of the suggested xanthan production process, developed and based on defined kinetic models, represents an excellent basis for its further improvement and for increasing its efficiency

    Optimization of the medium composition for production of antimicrobial substances by bacillus subtilis ATCC 6633

    No full text
    In the effort to overcome the increase in antimicrobial resistance of different pathogens, natural products from microbial sources appear to be the most favorable alternative to current antibiotics. Production of antimicrobial compounds is highly dependent on the nutritional conditions. Hence, in order to achieve high product yields, selection of the media constituents and optimization of their concentrations are required. In this research, the possibility of antimicrobial substances production using Bacillus subtilis ATCC 6633 was investigated. Also, optimization of the cultivation medium composition in terms of contents of glycerol, sodium nitrite and phosphates was done. Response surface methodology and the method of desirability function were applied for determination of optimal values of the examined factors. The developed model predicts that the maximum inhibition zone diameters for Bacillus cereus ATCC 10876 (33.50 mm) and Pseudomonas aeruginosa ATCC 27853 (12.00 mm) are achieved when the initial contents of glycerol, sodium nitrite and phosphates were 43.72 g/L, 1.93 g/L and 5.64 g/L, respectively. The results of these experiments suggest that further research should include the utilization of crude glycerol as a carbon source and optimization of composition of such media and cultivation conditions in order to improve production of antimicrobial substances using Bacillus subtilis ATCC 6633
    corecore