153 research outputs found

    The dual control of TFIIB recruitment by NC2 is gene specific

    Get PDF
    Negative co-factor 2 (NC2) is a conserved eukaryotic complex composed of two subunits, NC2α (Drap1) and NC2β (Dr1) that associate through a histone-fold motif. In this work, we generated mutants of NC2, characterized target genes for these mutants and studied the assembly of NC2 and general transcription factors on target promoters. We determined that the two NC2 subunits mostly function together to be recruited to DNA and regulate gene expression. We found that NC2 strongly controls promoter association of TFIIB, both negatively and positively. We could attribute the gene-specific repressor effect of NC2 on TFIIB to the C-terminal domain of NC2β, and define that it requires ORF sequences of the target gene. In contrast, the positive function of NC2 on TFIIB targets is more general and requires adequate levels of the NC2 histone-fold heterodimer on promoters. Finally, we determined that NC2 becomes limiting for TATA-binding protein (TBP) association with a heat inducible promoter under heat stress. This study demonstrates an important positive role of NC2 for formation of the pre-initiation complex on promoters, under normal conditions through control of TFIIB, or upon activation by stress via control of TBP

    Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β stimulated SK-N-SH cells

    Get PDF
    Purpose: Pomegranate fruit, Punica granatum L. (Punicaceae) and its constituents have been shown to inhibit inflammation. In this study we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β stimulated SK-N-SH cells. Methods: An enzyme immuno assay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB and phospho-IKK proteins were evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA. Results: PWE (25-200 µg/ml) dose dependently reduced COX-2 dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK were significantly (p<0.001) inhibited by PWE (50- 200 µg/ml). Our studies also show that PWE (50-200 µg/ml) significantly (p<0.01) inhibited NF-κB transactivation in TNFα-stimulated HEK293 cells. Furthermore PWE inhibited BACE-1 and Aβ expression in SK-N-SH cells treated with IL-1β. Conclusions: Taken together, our study demonstrates that pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders like Alzheimer’s disease

    Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases

    Get PDF
    The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates

    Topology of Type II REases revisited; structural classes and the common conserved core

    Get PDF
    Type II restriction endonucleases (REases) are deoxyribonucleases that cleave DNA sequences with remarkable specificity. Type II REases are highly divergent in sequence as well as in topology, i.e. the connectivity of secondary structure elements. A widely held assumption is that a structural core of five β-strands flanked by two α-helices is common to these enzymes. We introduce a systematic procedure to enumerate secondary structure elements in an unambiguous and reproducible way, and use it to analyze the currently available X-ray structures of Type II REases. Based on this analysis, we propose an alternative definition of the core, which we term the αβα-core. The αβα-core includes the most frequently observed secondary structure elements and is not a sandwich, as it consists of a five-strand β-sheet and two α-helices on the same face of the β-sheet. We use the αβα-core connectivity as a basis for grouping the Type II REases into distinct structural classes. In these new structural classes, the connectivity correlates with the angles between the secondary structure elements and with the cleavage patterns of the REases. We show that there exists a substructure of the αβα-core, namely a common conserved core, ccc, defined here as one α-helix and four β-strands common to all Type II REase of known structure

    NF-Y Recruits Ash2L to Impart H3K4 Trimethylation on CCAAT Promoters

    Get PDF
    BACKGROUND: Different histone post-translational modifications (PTMs) are crucial in the regulation of chromatin, including methylations of H3 at Lysine 4 by the MLL complex. A relevant issue is how this is causally correlated to the binding of specific transcription factors (TFs) in regulatory regions. NF-Y is a TF that regulates 30% of mammalian promoters containing the widespread CCAAT element. We and others established that the presence of H3K4me3 is dependent upon the binding of NF-Y. Here, we investigate the mechanisms of H3K4me3 deposition by NF-Y. METHODS: We employed Chromatin Immunoprecipitation in cells in which Ash2L and NF-Y subunits were knocked down by RNAi, to monitor the presence of histones PTMs and components of the MLL complex. We performed gene expression profiling of Ash2L-knocked down cells and analyzed the regulated genes. We performed ChIPs in leukemic cells in which MLL1 is devoid of the methyltransferase domain and fused to the AF4 gene. RESULTS: Knock down of the Ash2L subunit of MLL leads to a decrease in global H3K4me3 with a concomitant increase in H3K79me2. Knock down of NF-Y subunits prevents promoter association of Ash2L, but not MLL1, nor WDR5, and H3K4me3 drops dramatically. Endogenous NF-Y and Ash2L specifically interact in vivo. Analysis of the promoters of Ash2L regulated genes, identified by transcriptional profiling, suggests that a handful TF binding sites are moderately enriched, among which the CCAAT box. Finally, leukemic cells carrying the MLL-AF4 translocation show a decrease of H3K4me3, absence of Ash2L and increase in H3K79me2, while NF-Y binding was not significantly affected. CONCLUSIONS: Three types of conclusions are reached: (i) H3K4 methylation is not absolutely required for NF-Y promoter association. (ii) NF-Y acts upstream of H3K4me3 deposition by recruiting Ash2L. (iii) There is a general cross-talk between H3K4me3 and H3K79me2 which is independent from the presence of MLL oncogenic fusions

    Protein Expr Purif

    Get PDF
    E6 is a small oncoprotein involved in tumorigenesis induced by papillomaviruses (PVs). E6 often recognizes its cellular targets by binding to short motifs presenting the consensus LXXLL. E6 proteins have long resisted structural analysis. We found that bovine papillomavirus type 1 (BPV1) E6 binds the N-terminal LXXLL motif of the cellular protein paxillin with significantly higher affinity as compared to other E6/peptide interactions. Although recombinant BPV1 E6 was poorly soluble in the free state, provision of the paxillin LXXLL peptide during BPV1 E6 biosynthesis greatly enhanced the protein's solubility. Expression of BPV1 E6/LXXLL peptide complexes was carried out in bacteria in the form of triple fusion constructs comprising, from N- to C-terminus, the soluble carrier protein maltose binding protein (MBP), the LXXLL motif and the E6 protein. A TEV protease cleavage site was placed either between MBP and LXXLL motif or between LXXLL motif and E6. These constructs allowed us to produce highly concentrated samples of BPV1 E6, either covalently fused to the C-terminus of the LXXLL motif (intra-molecular complex) or non-covalently bound to it (inter-molecular complex). Heteronuclear NMR measurements were performed and showed that the E6 protein was folded with similar conformations in both covalent and non-covalent complexes. These data open the way to novel structural and functional studies of the BPV1 E6 in complex with its preferential target motif

    Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism

    Get PDF
    7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg[superscript 2+]-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg[superscript 2+], which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified ([β [subscript 6] over α [subscript 3]]) protein core and an expanded cluster-binding motif, CX[subscript 14]CX[subscript 2]C.United States. Dept. of Energy. Office of Biological and Environmental ResearchUnited States. Dept. of Energy. Office of Basic Energy SciencesNational Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473)National Center for Research Resources (U.S.) (5P41RR015301-10)National Institute of General Medical Sciences (U.S.) (8 P41 GM 103403-10)United States. Dept. of Energy (Contract DE-AC02-06CH11357

    Combining specificity determining and conserved residues improves functional site prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the location of functionally important sites from protein sequence and/or structure is a long-standing problem in computational biology. Most current approaches make use of sequence conservation, assuming that amino acid residues conserved within a protein family are most likely to be functionally important. Most often these approaches do not consider many residues that act to define specific sub-functions within a family, or they make no distinction between residues important for function and those more relevant for maintaining structure (e.g. in the hydrophobic core). Many protein families bind and/or act on a variety of ligands, meaning that conserved residues often only bind a common ligand sub-structure or perform general catalytic activities.</p> <p>Results</p> <p>Here we present a novel method for functional site prediction based on identification of conserved positions, as well as those responsible for determining ligand specificity. We define Specificity-Determining Positions (SDPs), as those occupied by conserved residues within sub-groups of proteins in a family having a common specificity, but differ between groups, and are thus likely to account for specific recognition events. We benchmark the approach on enzyme families of known 3D structure with bound substrates, and find that in nearly all families residues predicted by SDPsite are in contact with the bound substrate, and that the addition of SDPs significantly improves functional site prediction accuracy. We apply SDPsite to various families of proteins containing known three-dimensional structures, but lacking clear functional annotations, and discusse several illustrative examples.</p> <p>Conclusion</p> <p>The results suggest a better means to predict functional details for the thousands of protein structures determined prior to a clear understanding of molecular function.</p

    Dimerisation induced formation of the active site and the identification of three metal sites in EAL-phosphodiesterases

    Get PDF
    The bacterial second messenger cyclic di-3′,5′-guanosine monophosphate (c-di-GMP) is a key regulator of bacterial motility and virulence. As high levels of c-di-GMP are associated with the biofilm lifestyle, c-di-GMP hydrolysing phosphodiesterases (PDEs) have been identified as key targets to aid development of novel strategies to treat chronic infection by exploiting biofilm dispersal. We have studied the EAL signature motif-containing phosphodiesterase domains from the Pseudomonas aeruginosa proteins PA3825 (PA3825EAL) and PA1727 (MucREAL). Different dimerisation interfaces allow us to identify interface independent principles of enzyme regulation. Unlike previously characterised two-metal binding EAL-phosphodiesterases, PA3825EAL in complex with pGpG provides a model for a third metal site. The third metal is positioned to stabilise the negative charge of the 5′-phosphate, and thus three metals could be required for catalysis in analogy to other nucleases. This newly uncovered variation in metal coordination may provide a further level of bacterial PDE regulation
    corecore