9,954 research outputs found
Reference Profile Correlation Reveals Estrogen-like Trancriptional Activity of Curcumin
Background: Several secondary metabolites from herbal nutrient products act as weak estrogens (phytoestrogens), competing with endogenous estrogen for binding to the estrogen receptors and inhibiting steroid converting enzymes. However, it is still unclear whether these compounds elicit estrogen dependent transcription of genes at physiological concentrations. Methods: We compare the effects of physiological concentrations (100 nM) of the two phytoestrogens Enterolactone and Quercetin and the suspected phytoestrogen Curcumin on gene expression in the breast cancer cell line MCF7 with the effects elicited by 17-beta-estradiol (E2). Results: All three phytocompounds have weak effects on gene transcription; most of the E2 genes respond to the phytoestrogens in the same direction though to a much lesser extent and in the order Curcumin > Quercetin > Enterolactone. Gene regulation induced by these compounds was low for genes strongly induced by E2 and similar to the latter for genes only weakly regulated by the classic estrogen. Of interest with regard to the treatment of menopausal symptoms, the survival factor Birc5/survivin and the oncogene MYBL1 are strongly induced by E2 but only marginally by phytoestrogens. Conclusion: This approach demonstrates estrogenic effects of putative phytoestrogens at physiological concentrations and shows, for the first time, estrogenic effects of Curcumin. Copyright (C) 2010 S. Karger AG, Base
The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity
A theory for the structure of isothermal, self-gravitating gas spheres in
pressure equilibrium in a softened gravitational field is developed. The one
parameter spline softening proposed by Hernquist & Katz (1989) is used. We show
that the addition of this extra scale parameter implies that the set of
equilibrium solutions constitute a one-parameter family, rather than the one
and only one isothermal sphere solution for Newtonian gravity. We demonstrate
the perhaps somewhat surprising result that for any finite choice of softening
length and temperature, it is possible to deposit an arbitrarily large mass of
gas in pressure equilibrium and with a non-singular density distribution inside
of r_0 for any r_0 > 0. The theoretical predictions of our models are compared
with the properties of the small, massive, quasi-isothermal gas clumps which
typically form in numerical Tree-SPH simulations of 'passive' galaxy formation
of Milky Way sized galaxies. We find reasonable agreement despite the neglect
of rotational support in the models. We comment on whether the hydrodynamical
resolution in our numerical simulation of galaxy formation is sufficient, and
finally we conclude that one should be cautious, when comparing results of
numerical simulations involving gravitational softening and hydrodynamical
smoothing, with reality.Comment: 22 pages Latex + 12 figure
Critical Casimir effect in films for generic non-symmetry-breaking boundary conditions
Systems described by an O(n) symmetrical Hamiltonian are considered
in a -dimensional film geometry at their bulk critical points. A detailed
renormalization-group (RG) study of the critical Casimir forces induced between
the film's boundary planes by thermal fluctuations is presented for the case
where the O(n) symmetry remains unbroken by the surfaces. The boundary planes
are assumed to cause short-ranged disturbances of the interactions that can be
modelled by standard surface contributions corresponding
to subcritical or critical enhancement of the surface interactions. This
translates into mesoscopic boundary conditions of the generic
symmetry-preserving Robin type .
RG-improved perturbation theory and Abel-Plana techniques are used to compute
the -dependent part of the reduced excess free energy per
film area to two-loop order. When , it takes the scaling
form as
, where are scaling fields associated with the
surface-enhancement variables , while is a standard
surface crossover exponent. The scaling function
and its analogue for the Casimir force
are determined via expansion in and extrapolated to
dimensions. In the special case , the expansion
becomes fractional. Consistency with the known fractional expansions of D(0,0)
and to order is achieved by appropriate
reorganisation of RG-improved perturbation theory. For appropriate choices of
and , the Casimir forces can have either sign. Furthermore,
crossovers from attraction to repulsion and vice versa may occur as
increases.Comment: Latex source file, 40 pages, 9 figure
Effect of angular momentum on equilibrium properties of a self-gravitating system
The microcanonical properties of a two dimensional system of N classical
particles interacting via a smoothed Newtonian potential as a function of the
total energy E and the total angular momentum L are discussed. In order to
estimate suitable observables a numerical method based on an importance
sampling algorithm is presented. The entropy surface shows a negative specific
heat region at fixed L for all L. Observables probing the average mass
distribution are used to understand the link between thermostatistical
properties and the spatial distribution of particles. In order to define a
phase in non-extensive system we introduce a more general observable than the
one proposed by Gross and Votyakov [Eur. Phys. J. B:15, 115 (2000)]: the sign
of the largest eigenvalue of the entropy surface curvature. At large E the
gravitational system is in a homogeneous gas phase. At low E there are several
collapse phases; at L=0 there is a single cluster phase and for L>0 there are
several phases with 2 clusters. All these pure phases are separated by first
order phase transition regions. The signal of critical behaviour emerges at
different points of the parameter space (E,L). We also discuss the ensemble
introduced in a recent pre-print by Klinko & Miller; this ensemble is the
canonical analogue of the one at constant energy and constant angular momentum.
We show that a huge loss of informations appears if we treat the system as a
function of intensive parameters: besides the known non-equivalence at first
order phase transitions, there exit in the microcanonical ensemble some values
of the temperature and the angular velocity for which the corresponding
canonical ensemble does not exist, i.e. the partition sum diverges.Comment: 17 pages, 11 figures, submitted to Phys. Rev.
Casimir stress on parallel plates in de Sitter space
The Casimir stress on two parallel plates in de Sitter background for
massless scalar field satisfying Robin boundary conditions on the plates is
calculated. The metric is written in conformally flat form to make maximum use
of the Minkowski space calculations. Different cosmological constants are
assumed for the space between and outside of the plates to have general results
applicable to the case of domain wall formations in the early universe.Comment: 6 page
Casimir effect for scalar fields with Robin boundary conditions in Schwarzschild background
The stress tensor of a massless scalar field satisfying Robin boundary
conditions on two one-dimensional wall in two-dimensional Schwarzschild
background is calculated. We show that vacuum expectation value of stress
tensor can be obtained explicitly by Casimir effect, trace anomaly and Hawking
radiation.Comment: 10 pages, no figure
First Estimations of Cosmological Parameters From BOOMERANG
The anisotropy of the cosmic microwave background radiation contains
information about the contents and history of the universe. We report new
limits on cosmological parameters derived from the angular power spectrum
measured in the first Antarctic flight of the BOOMERANG experiment. Within the
framework of inflation-motivated adiabatic cold dark matter models, and using
only weakly restrictive prior probabilites on the age of the universe and the
Hubble expansion parameter , we find that the curvature is consistent with
flat and that the primordial fluctuation spectrum is consistent with scale
invariant, in agreement with the basic inflation paradigm. We find that the
data prefer a baryon density above, though similar to, the
estimates from light element abundances and big bang nucleosynthesis. When
combined with large scale structure observations, the BOOMERANG data provide
clear detections of both dark matter and dark energy contributions to the total
energy density , independent of data from high redshift
supernovae.Comment: As submitted to PRD, revised longer version with an additional figur
Scalar Casimir densities for cylindrically symmetric Robin boundaries
Wightman function, the vacuum expectation values of the field square and the
energy-momentum tensor are investigated for a massive scalar field with general
curvature coupling parameter in the region between two coaxial cylindrical
boundaries. It is assumed that the field obeys general Robin boundary
conditions on bounding surfaces. The application of a variant of the
generalized Abel-Plana formula allows to extract from the expectation values
the contribution from single shells and to present the interference part in
terms of exponentially convergent integrals. The vacuum forces acting on the
boundaries are presented as the sum of self-action and interaction terms. The
first one contains well-known surface divergences and needs a further
renormalization. The interaction forces between the cylindrical boundaries are
finite and are attractive for special cases of Dirichlet and Neumann scalars.
For the general Robin case the interaction forces can be both attractive or
repulsive depending on the coefficients in the boundary conditions. The total
Casimir energy is evaluated by using the zeta function regularization
technique. It is shown that it contains a part which is located on bounding
surfaces. The formula for the interference part of the surface energy is
derived and the energy balance is discussed.Comment: 22 pages, 5 figure
Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of BOOMERANG Observations
We report the most complete analysis to date of observations of the Cosmic
Microwave Background (CMB) obtained during the 1998 flight of BOOMERANG. We use
two quite different methods to determine the angular power spectrum of the CMB
in 20 bands centered at l = 50 to 1000, applying them to 50% more data than has
previously been analyzed. The power spectra produced by the two methods are in
good agreement with each other, and constitute the most sensitive measurements
to date over the range 300 < l < 1000. The increased precision of the power
spectrum yields more precise determinations of several cosmological parameters
than previous analyses of BOOMERANG data. The results continue to support an
inflationary paradigm for the origin of the universe, being well fit by a 13.5
Gyr old, flat universe composed of approximately 5% baryonic matter, 30% cold
dark matter, and 65% dark energy, with a scale invariant initial density
perturbations.Comment: 26 pages, 15 figures. Higher resolution figures available at
http://cmb.phys.cwru.edu/boomerang/ Correction to numbers posted for MADCAP
C_l's in Table 2. Correct numbers were used in figures and parameter
extractio
- âŠ