13 research outputs found

    Dynamic alpha power modulations and slow negative potentials track natural shifts of spatio‐temporal attention

    Get PDF
    Alpha power modulations and slow negative potentials have previously been associated with anticipatory processes in spatial and temporal top-down attention. In typical experimental designs, however, neural responses triggered by transient stimulus onsets can interfere with attention-driven activity patterns and our interpretation of such. Here, we investigated these signatures of spatio-temporal attention in a dynamic paradigm free from potentially confounding stimulus-driven activity using electroencephalography. Participants attended the cued side of a bilateral stimulus rotation and mentally counted how often one of two remembered sample orientations (i.e., the target) was displayed while ignoring the uncued side and non-target orientation. Afterwards, participants performed a delayed match-to-sample task, in which they indicated if the orientation of a probe stimulus matched the corresponding sample orientation (previously target or non-target). We observed dynamic alpha power reductions and slow negative waves around task-relevant points in space and time (i.e., onset of the target orientation in the cued hemifield) over posterior electrodes contralateral to the locus of attention. In contrast to static alpha power lateralization, these dynamic signatures correlated with subsequent memory performance (primarily detriments for matching probes of the non-target orientation), suggesting a preferential allocation of attention to task-relevant locations and time points at the expense of reduced resources and impaired performance for information outside the current focus of attention. Our findings suggest that humans can naturally and dynamically focus their attention at relevant points in space and time and that such spatio-temporal attention shifts can be reflected by dynamic alpha power modulations and slow negative potentials

    Impaired object-location learning and recognition memory but enhanced sustained attention in M2 muscarinic receptor-deficient mice

    Get PDF
    © 2018, The Author(s). Rationale: Muscarinic acetylcholine receptors are known to play key roles in mediating cognitive processes, and impaired muscarinic cholinergic neurotransmission is associated with normal ageing processes and Alzheimer’s disease. However, the specific contributions of the individual muscarinic receptor subtypes (M1–M5) to cognition are presently not well understood. Objectives: The aim of this study was to investigate the contribution of M2-type muscarinic receptor signalling to sustained attention, executive control and learning and memory. Methods: M2 receptor-deficient (M2−/−) mice were tested on a touchscreen-operated task battery testing visual discrimination, behavioural flexibility, object-location associative learning, attention and response control. Spontaneous recognition memory for real-world objects was also assessed. Results: We found that M2−/− mice showed an enhancement of attentional performance, but significant deficits on some tests of learning and memory. Executive control and visual discrimination were unaffected by M2-depletion. Conclusions: These findings suggest that M2 activation has heterogeneous effects across cognitive domains, and provide insights into how acetylcholine may support multiple specific cognitive processes through functionally distinct cholinergic receptor subtypes. They also suggest that therapeutics involving M2 receptor-active compounds should be assessed across a broad range of cognitive domains, as they may enhance some cognitive functions, but impair others

    Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction.

    Get PDF
    RATIONALE: The hippocampus is implicated in many of the cognitive impairments observed in conditions such as Alzheimer's disease (AD) and schizophrenia (SCZ). Often, mice are the species of choice for models of these diseases and the study of the relationship between brain and behaviour more generally. Thus, automated and efficient hippocampal-sensitive cognitive tests for the mouse are important for developing therapeutic targets for these diseases, and understanding brain-behaviour relationships. One promising option is to adapt the touchscreen-based trial-unique nonmatching-to-location (TUNL) task that has been shown to be sensitive to hippocampal dysfunction in the rat. OBJECTIVES: This study aims to adapt the TUNL task for use in mice and to test for hippocampus-dependency of the task. METHODS: TUNL training protocols were altered such that C57BL/6 mice were able to acquire the task. Following acquisition, dysfunction of the dorsal hippocampus (dHp) was induced using a fibre-sparing excitotoxin, and the effects of manipulation of several task parameters were examined. RESULTS: Mice could acquire the TUNL task using training optimised for the mouse (experiments 1). TUNL was found to be sensitive to dHp dysfunction in the mouse (experiments 2, 3 and 4). In addition, we observed that performance of dHp dysfunction group was somewhat consistently lower when sample locations were presented in the centre of the screen. CONCLUSIONS: This study opens up the possibility of testing both mouse and rat models on this flexible and hippocampus-sensitive touchscreen task.CHK received funding from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI11C1183). CJH, LMS and TJB were funded by Medical Research Council/Wellcome Trust grant 089703/Z/09/Z. CR, LMS and TJB were funded by Alzheimer’s Research UK [ART/ESG2010/1]. ACM, MHE, CAO, LMS and TJB also received funding from the Innovative Medicine Initiative Joint Undertaking under grant agreement no 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00213-015-4017-

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Hippocampal LTP and spatial learning in glutamate receptor subunit-deficient mice

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Running enhances spatial pattern separation in mice

    Get PDF
    Increasing evidence suggests that regular exercise improves brain health and promotes synaptic plasticity and hippocampal neurogenesis. Exercise improves learning, but specific mechanisms of information processing influenced by physical activity are unknown. Here, we report that voluntary running enhanced the ability of adult (3 months old) male C57BL/6 mice to discriminate between the locations of two adjacent identical stimuli. Improved spatial pattern separation in adult runners was tightly correlated with increased neurogenesis. In contrast, very aged (22 months old) mice had impaired spatial discrimination and low basal cell genesis that was refractory to running. These findings suggest that the addition of newly born neurons may bolster dentate gyrus-mediated encoding of fine spatial distinctions

    Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex

    No full text
    Perineuronal nets (PNNs) are extracellular matrix structures surrounding cortical neuronal cell bodies and proximal dendrites and are involved in the control of brain plasticity and the closure of critical periods. Expression of the link protein Crtl1/Hapln1 in neurons has recently been identified as the key event triggering the formation of PNNs. Here we show that the genetic attenuation of PNNs in adult brain Crtl1 knock-out mice enhances long-term object recognition memory and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognition memory. Identical prolongation of memory follows localized digestion of PNNs with chondroitinase ABC, an enzyme that degrades the chondroitin sulfate proteoglycan components of PNNs. The memory-enhancing effect of chondroitinase ABC treatment attenuated over time, suggesting that the regeneration of PNNs gradually restored control plasticity levels. Our findings indicate that PNNs regulate both memory and experience-driven synaptic plasticity in adulthood

    Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex

    No full text
    Perineuronal nets (PNNs) are extracellular matrix structures surrounding cortical neuronal cell bodies and proximal dendrites and are involved in the control of brain plasticity and the closure of critical periods. Expression of the link protein Crtl1/Hapln1 in neurons has recently been identified as the key event triggering the formation of PNNs. Here we show that the genetic attenuation of PNNs in adult brain Crtl1 knock-out mice enhances long-term object recognition memory and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognition memory. Identical prolongation of memory follows localized digestion of PNNs with chondroitinase ABC, an enzyme that degrades the chondroitin sulfate proteoglycan components of PNNs. The memory-enhancing effect of chondroitinase ABC treatment attenuated over time, suggesting that the regeneration of PNNs gradually restored control plasticity levels. Our findings indicate that PNNs regulate both memory and experience-driven synaptic plasticity in adulthood.</p
    corecore