5,557 research outputs found
Imaging via Compressive Sampling [Introduction to compressive sampling and recovery via convex programming]
There is an extensive body of literature on image compression, but the central concept is straightforward: we transform the image into an appropriate basis and then code only the important expansion coefficients. The crux is finding a good transform, a problem that has been studied extensively from both a theoretical [14] and practical [25] standpoint. The most notable product of this research is the wavelet transform [9], [16]; switching from sinusoid-based representations to wavelets marked a watershed in image compression and is the essential difference between the classical JPEG [18] and modern JPEG-2000 [22] standards.
Image compression algorithms convert high-resolution images into a relatively small bit streams (while keeping the essential features intact), in effect turning a large digital data set into a substantially smaller one. But is there a way to avoid the large digital data set to begin with? Is there a way we can build the data compression directly into the acquisition? The answer is yes, and is what compressive sampling (CS) is all about
Convex Cardinal Shape Composition
We propose a new shape-based modeling technique for applications in imaging
problems. Given a collection of shape priors (a shape dictionary), we define
our problem as choosing the right dictionary elements and geometrically
composing them through basic set operations to characterize desired regions in
an image. This is a combinatorial problem solving which requires an exhaustive
search among a large number of possibilities. We propose a convex relaxation to
the problem to make it computationally tractable. We take some major steps
towards the analysis of the proposed convex program and characterizing its
minimizers. Applications vary from shape-based characterization, object
tracking, optical character recognition, and shape recovery in occlusion, to
other disciplines such as the geometric packing problem
Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions
We develop a robust uncertainty principle for finite signals in C^N which
states that for almost all subsets T,W of {0,...,N-1} such that |T|+|W| ~ (log
N)^(-1/2) N, there is no sigal f supported on T whose discrete Fourier
transform is supported on W. In fact, we can make the above uncertainty
principle quantitative in the sense that if f is supported on T, then only a
small percentage of the energy (less than half, say) of its Fourier transform
is concentrated on W.
As an application of this robust uncertainty principle (QRUP), we consider
the problem of decomposing a signal into a sparse superposition of spikes and
complex sinusoids. We show that if a generic signal f has a decomposition using
spike and frequency locations in T and W respectively, and obeying |T| + |W| <=
C (\log N)^{-1/2} N, then this is the unique sparsest possible decomposition
(all other decompositions have more non-zero terms). In addition, if |T| + |W|
<= C (\log N)^{-1} N, then this sparsest decomposition can be found by solving
a convex optimization problem.Comment: 25 pages, 9 figure
Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information
This paper considers the model problem of reconstructing an object from
incomplete frequency samples. Consider a discrete-time signal f \in \C^N and
a randomly chosen set of frequencies of mean size . Is it
possible to reconstruct from the partial knowledge of its Fourier
coefficients on the set ?
A typical result of this paper is as follows: for each , suppose that
obeys # \{t, f(t) \neq 0 \} \le \alpha(M) \cdot (\log N)^{-1} \cdot #
\Omega, then with probability at least , can be
reconstructed exactly as the solution to the minimization problem In short, exact recovery may be
obtained by solving a convex optimization problem. We give numerical values for
which depends on the desired probability of success; except for the
logarithmic factor, the condition on the size of the support is sharp.
The methodology extends to a variety of other setups and higher dimensions.
For example, we show how one can reconstruct a piecewise constant (one or
two-dimensional) object from incomplete frequency samples--provided that the
number of jumps (discontinuities) obeys the condition above--by minimizing
other convex functionals such as the total-variation of
- …
