38 research outputs found
Recommended from our members
The effects of multiple pathogens on amphibians in the Pacific Northwest
The earth is undergoing a “biodiversity crisis” characterized by loss of populations, species, genetic diversity, and ecosystem services. Part of this crisis consists of population declines, extinctions, and increased incidence of deformities in amphibians. It is unknown whether deformities contribute to these declines. Many cases of population declines in amphibians are associated with infectious disease. Water molds (Oomycota: Oomycetes: Saprolegniales) (e.g. Achlya and Saprolegnia) may contribute to amphibian population declines whereas parasitic flatworms (Ribeiroia) appear to be major causes of amphibian deformities. I found that Saprolegnia can kill larval and newly-metamorphosed juvenile amphibians. In addition, I investigated synergistic effects of Saprolegnia and the environmental contaminant nitrate on survival of amphibian larvae. No synergisms were found. However, there was a less-than-additive interaction affecting one frog species. Saprolegnia killed Rana aurora (red-legged frog) larvae, but only when nitrate was not added, consistent with nitrate preventing Saprolegnia from killing R. aurora. I also tested for possible interactions among the pathogenic water mold A. flagellata, the pathogenic fungus Batrachochytrium dendrobatidis (BD), and the parasitic trematode Ribeiroia. No between-pathogen interactions were found, however, there were main effects of Ribeiroia and BD. Ribeiroia caused mortality and increased frequency of limb deformities. There were differences in the composition of deformity types between my study and previous work, suggesting that the relative frequencies of different deformity types produced by Ribeiroia may be context-dependent. Also, there was an overall effect of delayed development in Ribeiroia-exposed individuals. In addition, individuals that did not die or display limb deformities following Ribeiroia exposure had slower development than controls not exposed to Ribeiroia. Delayed development may contribute to the effects of Ribeiroia on amphibian populations. In contrast, BD sped up development, although there was no evidence of BD infection. These results are consistent with amphibian larvae responding to the presence of BD by increasing the rate of development. Hastened metamorphosis and dispersal from larval habitats may decrease the risk of BD infection or reduce BD infection load. Mortality of post-embryonic life stages from water molds and sublethal effects of Ribeiroia and BD on amphibian development may influence how these pathogens interact with amphibian populations
Effects of the pathogenic water mold Saprolegnia ferax on survival of amphibian larvae
Infectious diseases are a significant threat to worldwide biodiversity. Amphibian declines, a significant part of current biodiversity losses, are in many cases associated with infectious disease. Water molds are one group of pathogens affecting amphibians on a worldwide basis. Although water molds have been studied extensively for their effects on host embryos, little information is available about how they affect post-embryonic amphibians. We tested the effects of one species of water mold, Saprolegnia ferax, in a comparative study of larvae of 4 amphibian species: Pseudacris regilla (Pacific treefrog), Rana cascadae (Cascades frog), Ambystoma macrodactylum (long-toed salamander), and R. aurora (red-legged frog). S. ferax can kill amphibians at the embryonic and juvenile life history stages, depending on the amphibian species. In the present study, a 1 wk exposure to S. ferax killed P. regilla larvae and a 2 wk exposure killed R. aurora larvae. Larvae of the other host species were unaffected after 1 wk of exposure to S. ferax. Our results suggest that S. ferax can kill amphibian larvae and further suggest that evaluation of how pathogens affect amphibians at the population level requires investigation at various life stages
Influence of ultraviolet-B radiation on growth, prevalence of deformities, and susceptibility to predation in Cascades frog (Rana cascadae) larvae
Abstract Ambient levels of ultraviolet-B radiation (UVB) have a variety of detrimental effects on aquatic organisms. These include death and effects on growth, development, physiology, and behavior. Amphibians show all of these effects. However, the effects vary with species, life history stage, and ecological context. Little is known about the implications of the detrimental effects of UVB on ecological dynamics. Our study was designed to test how UVB may affect predator-prey interactions, an important ecological dynamic. Specifically, we tested the effect of UVB on the susceptibility of Cascades frog (Rana cascadae) larvae to predation by roughskinned newts (Taricha granulosa). We also further examined the sublethal effects of UVB on growth and development in Cascades frog larvae. We found no direct effect of UVB exposure on survival. However, UVB-exposed frog larvae displayed decreased growth and increased prevalence of deformities. UVB also caused increased susceptibility to predation, but there was a significant treatment-block interaction. UVB increased susceptibility to predation in two out of five blocks of Cascades frogs. The other three blocks did not show an effect of UVB on susceptibility to predation. Our study suggests that UVB can alter susceptibility to predation in at least one amphibian species. UVB-induced alteration of predator-prey interactions could potentially lead to changes at the population, community, and ecosystem levels
The Fungicide Chlorothalonil Is Nonlinearly Associated with Corticosterone Levels, Immunity, and Mortality in Amphibians
Background: Contaminants have been implicated in declines of amphibians, a taxon with vital systems similar to those of humans. However, many chemicals have not been thoroughly tested on amphibians or do not directly kill them
Complex interactive effects of water mold, herbicide, and the fungus Batrachochytrium dendrobatidis on Pacific treefrog Hyliola regilla hosts
Infectious diseases pose a serious threat to global biodiversity. However, their ecological impacts are not independent of environmental conditions. For example, the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which has contributed to population declines and extinctions in many amphibian species, interacts with several environmental factors to influence its hosts, but potential interactions with other pathogens and environmental contaminants are understudied. We examined the combined effects of Bd, a water mold (Achlya sp.), and the herbicide Roundup® Regular (hereafter, Roundup®) on larval Pacific treefrog Hyliola regilla hosts. We employed a 2 wk, fully factorial laboratory experiment with 3 ecologically realistic levels (0, 1, and 2 mg l-1 of active ingredient) of field-formulated Roundup®, 2 Achlya treatments (present and absent), and 2 Bd treatments (present and absent). Our results were consistent with sublethal interactive effects involving all 3 experimental factors. When Roundup® was absent, the proportion of Bd-exposed larvae infected with Bd was elevated in the presence of Achlya, consistent with Achlya acting as a synergistic cofactor that facilitated the establishment of Bd infection. However, this Achlya effect became nonsignificant at 1 mg l-1 of the active ingredient of Roundup® and disappeared at the highest Roundup® concentration. In addition, Roundup® decreased Bd loads among Bd-exposed larvae. Our study suggests complex interactive effects of a water mold and a contaminant on Bd infection in amphibian hosts. Achlya and Roundup® were both correlated with altered patterns of Bd infection, but in different ways, and Roundup® appeared to remove the influence of Achlya on Bd
Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections
Copyright: © 2013 Baron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by ANR (ANR-07-BLAN-0214 and ANR-12-EMMA-00O7-01), CNRS and INRA. PvW was financially supported by the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Effect of Sub-Lethal Exposure to Ultraviolet Radiation on the Escape Performance of Atlantic Cod Larvae (Gadus morhua)
The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to depletion of the ozone layer. Several studies have reported that UV radiation reduces survival of fish larvae. However, indirect and sub-lethal impacts of UV radiation on fish behavior have been given little consideration. We observed the escape performance of larval cod (24 dph, SL: 7.6±0.2 mm; 29 dph, SL: 8.2±0.3 mm) that had been exposed to sub-lethal levels of UV radiation vs. unexposed controls. Two predators were used (in separate experiments): two-spotted goby (Gobiusculus flavescens; a suction predator) and lion's mane jellyfish (Cyanea capillata; a “passive" ambush predator). Ten cod larvae were observed in the presence of a predator for 20 minutes using a digital video camera. Trials were replicated 4 times for goby and 5 times for jellyfish. Escape rate (total number of escapes/total number of attacks ×100), escape distance and the number of larvae remaining at the end of the experiment were measured. In the experiment with gobies, in the UV-treated larvae, both escape rate and escape distance (36%, 38±7.5 mm respectively) were significantly lower than those of control larvae (75%, 69±4.7 mm respectively). There was a significant difference in survival as well (UV: 35%, Control: 63%). No apparent escape response was observed, and survival rate was not significantly different, between treatments (UV: 66%, Control: 74%) in the experiment with jellyfish. We conclude that the effect and impact of exposure to sub-lethal levels of UV radiation on the escape performance of cod larvae depends on the type of predator. Our results also suggest that prediction of UV impacts on fish larvae based only on direct effects are underestimations
Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced Changes in Body Plan
BACKGROUND: By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. METHODOLOGY/PRINCIPAL FINDINGS: By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ~50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. CONCLUSIONS/SIGNIFICANCE: Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.Brett A. Goodman and Pieter T. J. Johnso
A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles
© 2017 Huggins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental DNA approach mitigates problems associated with microscopic identification and can be applied to detect nematode parasitoses in wild and captive hosts for infection surveillance and maintenance of healthy populations