2,594 research outputs found

    High-frequency oscillations in low-dimensional conductors and semiconductor superlattices induced by current in stack direction

    Full text link
    A narrow energy band of the electronic spectrum in some direction in low-dimensional crystals may lead to a negative differential conductance and N-shaped I-V curve that results in an instability of the uniform stationary state. A well-known stable solution for such a system is a state with electric field domain. We have found a uniform stable solution in the region of negative differential conductance. This solution describes uniform high-frequency voltage oscillations. Frequency of the oscillation is determined by antenna properties of the system. The results are applicable also to semiconductor superlattices.Comment: 8 pages, 3 figure

    Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices

    Full text link
    We consider the spontaneous creation of a dc voltage across a strongly coupled semiconductor superlattice subjected to THz radiation. We show that the dc voltage may be approximately proportional either to an integer or to a half- integer multiple of the frequency of the applied ac field, depending on the ratio of the characteristic scattering rates of conducting electrons. For the case of an ac field frequency less than the characteristic scattering rates, we demonstrate the generation of an unquantized dc voltage.Comment: 6 pages, 3 figures, RevTEX, EPSF. Revised version v3: corrected typo

    Superlattice with hot electron injection: an approach to a Bloch oscillator

    Full text link
    A semiconductor superlattice with hot electron injection into the miniband is considered. The injection changes the stationary distribution function and results in a qualitative change of the frequency behaviour of the differential conductivity. In the regime with Bloch oscillating electrons and injection into the upper part of the miniband the region of negative differential conductivity is shifted from low frequencies to higher frequencies. We find that the dc differential conductivity can be made positive and thus the domain instability can be suppressed. At the same time the high-frequency differential conductivity is negative above the Bloch frequency. This opens a new way to make a Bloch oscillator operating at THz frequencies.Comment: RevTeX, 8 pages, 2 figures, to be published in Phys. Rev. B, 15 Januar 200

    Prediction for new magnetoelectric fluorides

    Get PDF
    We use symmetry considerations in order to predict new magnetoelectric fluorides. In addition to these magnetoelectric properties, we discuss among these fluorides the ones susceptible to present multiferroic properties. We emphasize that several materials present ferromagnetic properties. This ferromagnetism should enhance the interplay between magnetic and dielectric properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed Matte

    Spin wave resonances in antiferromagnets

    Full text link
    Spin wave resonances with enormously large wave numbers corresponding to wave vectors 10^5-10^6 cm^{-1} are observed in thin plates of FeBO3. The study of spin wave resonances allows one to obtain information about the spin wave spectrum. The temperature dependence of a non-uniform exchange constant is determined for FeBO3. Considerable softening of the magnon spectrum resulting from the interaction of magnons, is observed at temperatures above 1/3 of the Neel temperature. The excitation level of spin wave resonances is found to depend significantly on the inhomogeneous elastic distortions artificially created in the sample. A theoretical model to describe the observed effects is proposed.Comment: 6 pages, 6 figure

    Magneto-electric effect in NdCrTiO5

    Full text link
    We have measured the dielectric constant and the pyroelectric current of orthorhombic (space group PbamPbam) NdCrTiO5_5 polycrystalline samples. The dielectric constant and the pyroelectric current show features associated with ferroelectric transitions at the antiferromagnetic transition temperature (TNT_{\text{N}} = 21 K). The effect of magnetic fields is to enhance the features almost linearly up to the maximum measured field (7 T) with a spontaneous polarization value of 3.5μ\sim 3.5 \muC/m2^2. Two possible scenarios, the linear magnetoelectric effect and multiferroicity (antiferromagnetism + ferroelectricity), are discussed as possible explanations for the observations.Comment: 7 pages, 6 figure
    corecore