2,556 research outputs found
High-frequency oscillations in low-dimensional conductors and semiconductor superlattices induced by current in stack direction
A narrow energy band of the electronic spectrum in some direction in
low-dimensional crystals may lead to a negative differential conductance and
N-shaped I-V curve that results in an instability of the uniform stationary
state. A well-known stable solution for such a system is a state with electric
field domain. We have found a uniform stable solution in the region of negative
differential conductance. This solution describes uniform high-frequency
voltage oscillations. Frequency of the oscillation is determined by antenna
properties of the system. The results are applicable also to semiconductor
superlattices.Comment: 8 pages, 3 figure
Dissipationless Spin Current between Two Coupled Ferromagnets
We demonstrate the general principle which states that a dissipationless spin
current flows between two coupled ferromagnets if their magnetic orders are
misaligned. This principle applies regardless the two ferromagnets are metallic
or insulating, and also generally applies to bulk magnetic insulators. On a
phenomenological level, this principle is analogous to Josephson effect, and
yields a dissipationless spin current that is independent from scattering. The
microscopic mechanisms for the dissipationless spin current depend on the
systems, which are elaborated in details. A uniform, static magnetic field is
further proposed to be an efficient handle to create the misaligned
configuration and stabilize the dissipationless spin current.Comment: 10 pages, 5 figure
Photoacoustic effect in micro- and nanostructures: numerical simulations of Lagrange equations
The work provides the description of theoretical and numerical modeling techniques of thermomechanical effects that take place in absorbing micro- and nanostructures of different materials under the action of pulsed laser radiation. A proposed technique of the numerical simulation is based on the solution of equations of motion of continuous media in the form of Lagrange for spatially inhomogeneous media. This model allows calculating fields of temperature, pressure, density, and velocity of the medium depending on the parameters of laser pulses and the characteristics of micro- and nanostructures.The work provides the description of theoretical and numerical modeling techniques of thermomechanical effects that take place in absorbing micro- and nanostructures of different materials under the action of pulsed laser radiation. A proposed technique of the numerical simulation is based on the solution of equations of motion of continuous media in the form of Lagrange for spatially inhomogeneous media. This model allows calculating fields of temperature, pressure, density, and velocity of the medium depending on the parameters of laser pulses and the characteristics of micro- and nanostructures
Prediction for new magnetoelectric fluorides
We use symmetry considerations in order to predict new magnetoelectric
fluorides. In addition to these magnetoelectric properties, we discuss among
these fluorides the ones susceptible to present multiferroic properties. We
emphasize that several materials present ferromagnetic properties. This
ferromagnetism should enhance the interplay between magnetic and dielectric
properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed
Matte
Negative high-frequency differential conductivity in semiconductor superlattices
We examine the high-frequency differential conductivity response properties
of semiconductor superlattices having various miniband dispersion laws. Our
analysis shows that the anharmonicity of Bloch oscillations (beyond
tight-binding approximation) leads to the occurrence of negative high-frequency
differential conductivity at frequency multiples of the Bloch frequency. This
effect can arise even in regions of positive static differential conductivity.
The influence of strong electron scattering by optic phonons is analyzed. We
propose an optimal superlattice miniband dispersion law to achieve
high-frequency field amplification
Phonons in magnon superfluid and symmetry breaking field
Recent experiments [1],[2] which measured the spectrum of the Goldstone
collective mode of coherently precessing state in 3He-B are discussed using the
presentation of the coherent spin precession in terms of the Bose-Einstein
condensation of magnons. The mass in the spectrum of the Goldstone boson --
phonon in the superfluid magnon liquid -- is induced by the symmetry breaking
field, which is played by the RF magnetic fieldComment: 2 pages, JETP Letters style, no figures, version accepted in JETP
Letter
Spin echo in spinor dipolar Bose-Einstein condensates
We theoretically propose and numerically realize spin echo in a spinor
Bose--Einstein condensate (BEC). We investigate the influence on the spin echo
of phase separation of the condensate. The equation of motion of the spin
density exhibits two relaxation times. We use two methods to separate the
relaxation times and hence demonstrate a technique to reveal magnetic
dipole--dipole interactions in spinor BECs.Comment: 4 pages, 5 figure
- …