100 research outputs found

    A small number of anti-CD3 molecules on dendritic cells stimulate DNA synthesis in mouse T lymphocytes

    Get PDF
    Resting T cells enter cell cycle when challenged with anti-CD3 mAb and accessory cells that bear required Fc receptor (FcR). Presentation of anti-CD3 is though to be a model for antigens presented by accessory cells to the TCR complex. We have obtained evidence that the number of anti-CD3 molecules that are associated with the accessory cell can be very small. We first noticed that thymic dendritic cells and cultured, but not freshly isolated, epidermal Langerhans cells (LC) were active accessory cells for responses to anti-CD3 mAb. DNA synthesis was abrogated by a mAb to the FcR but not by mAb to other molecules used in clonally specific antigen recognition, i.e., class I and II MHC products or CD4 and CD8. The requisite FcR could be identified on the LC but in small numbers. Freshly isolated LC had 20,000 FcR per cell, while the more active cultured LC had only 2,000 sites, using 125I-anti-FcR mAb in quantitative binding studies. Individual LC had similar levels of FcR, as evidenced with a sensitive FACS. FcR could not be detected on T cells or within the dendritic cell cytoplasm, at the start of or during the mitogenesis response. When the response was assessed at 30 h with single cell assays, at least 20 T cells became lymphoblasts per added LC, and at least 8 T cells were synthesizing DNA while in contact with the LC in discrete cell clusters. To the extent that anti-CD3 represents a polyclonal model for antigen presentation to specific T cell clones, these results suggest two conclusions. First, only 200-300 molecules of ligand on dendritic cells may be required to trigger a T cell. Second, the maturation of LC in culture entails \u27sensitizing\u27 functions other than ligand presentation (anti-CD3 on FcR) top clonotypic T cell receptors

    Proliferating dendritic cell progenitors in human blood

    Get PDF
    Romani, N., Gruner, S., Brang, D., Kampgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch, P.O., Steinman, R.M., and Schuler, G. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180:83-93, 1994https://digitalcommons.rockefeller.edu/historical-scientific-reports/1039/thumbnail.jp

    Proliferating dendritic cell progenitors in human blood

    Get PDF
    CD34+cells in human cord blood and marrow are known to give rise to dendritic cells (DC), as well as to other myeloid lineages. CD34+cells are rare in adult blood, however, making it difficult to use CD34 + ceils to ascertain if DC progenitors are present in the circulation and if blood can be a starting point to obtain large numbers of these immunostimulatory antigenpresenting cells for clinical studies. A systematic search for DC progenitors was therefore carried out in several contexts. In each case, we looked initially for the distinctive proliferating aggregates that were described previously in mice. In cord blood, it was only necessary to deplete erythroid progenitors, and add granulocyte/macrophage colony-stimulating factor (GM-CSF) together with tumor necrosis factor (TNF), to observe many aggregates and the production of typical DC progeny. In adult blood from patients receiving CSFs after chemotherapy for malignancy, GMCSF and TNF likewise generated characteristic DCs from HLA-DR negative precursors. However, in adult blood from healthy donors, the above approaches only generated small DC aggregates which then seemed to become monocytes. When interleukin 4 was used to suppress monocyte development (Jansen, J. H., G.-J. H. M. Wientjens, W. E. Fibbe, K. Willemze, and H. C. Kluin-Nelemans. 1989. J. Exp. Med. 170:577.), the addition of GM-CSF led to the formation of large proliferating DC aggregates and within 5-7 d, many nonproliferating progeny, about 3-8 million cells per 40 ml of blood. The progeny had a characteristic morphology and surface composition (e.g., abundant HLA-DK and accessory molecules for cell-mediated immunity) and were potent stimulators of quiescent T cells. Therefore, large numbers of DCs can be mobilized by specific cytokines from progenitors in the blood stream. These relatively large numbers of DC progeny should facilitate future studies of their FceRI and CD4 receptors, and their use in stimulating T cell-mediated resistance to viruses and tumors

    A small number of anti-CD3 molecules on dendritic cells stimulates DNA synthesis in mouse T lymphocytes

    Get PDF
    Romani, N., Inaba, K., Puré, E., Crowley, M., Witmer-Pack, M., and Steinman, R.M. A small number of anti-CD3 molecules on dendritic cells stimulates DNA synthesis in mouse T lymphocytes. J. Exp. Med. 169: 1153-1168, 1989https://digitalcommons.rockefeller.edu/historical-scientific-reports/1022/thumbnail.jp

    An antigen-independent contact mechanism as an early step in T cell-proliferative responses to dendritic cells

    Get PDF
    Dendritic cells bearing antigen efficiently aggregate and stimulate antigen-specific T cells. We describe an experimental model in which an initial, apparently antigen-independent binding step is followed by ligation of the TCR. The model is the polyclonal response to mAb to the CD3 portion of the TCR complex. Epidermal and thymic dendritic cells utilize low levels of Fc receptors to present the anti-CD3 mAb and induce mitogenesis. Within 3 h of coculture, most of the dendritic cells have formed clusters with the resting T lymphocytes, and these clusters are the site for subsequent DNA synthesis and cell growth. However, the binding of dendritic cells to T cells proceeds as efficiently in the absence of anti-CD3 as in its presence, and anti-FcR mAb does not block. CD3 and Fc receptors are essential for the subsequent mitogenesis response in dendritic-T cell clusters. Because an exogenous ligand for the TCR does not seem to be required for the extensive polyclonal clustering of resting lymphocytes to dendritic cells, we suggest that an antigen-independent mechanism mediates the initial interaction. This clustering seems essential for T cell growth since we do not detect, in two-chamber experiments, soluble lymphocyte-activating factors that originate from dendritic-T cell aggregates and that activate anti-CD3-coated T cells

    Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor

    Get PDF
    Antigen-presenting, major histocompatibility complex (MHC) class II-rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II-negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent “stroma.” At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon recuhure, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colonystimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since \u3c5 × 10 6 dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type

    Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte-macrophage colony stimulating factor

    Get PDF
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte-macrophage colony stimulating factor. J. Exp. Med. 176: 1693-1702, 1992https://digitalcommons.rockefeller.edu/historical-scientific-reports/1033/thumbnail.jp

    Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature, epidermal Langerhans cells

    Get PDF
    Romani, N., Koide, S., Crowley, M., Witmer-Pack, M., Livingston, A.M., Fathman, C.G., Inaba, K., and Steinman, R.M. Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature, epidermal Langerhans cells. J. Exp. Med. 169: 1169-1178, 1989https://digitalcommons.rockefeller.edu/historical-scientific-reports/1023/thumbnail.jp

    Langerhans Cells at the Interface of Medicine, Science, and Industry

    Get PDF
    • …
    corecore