6 research outputs found

    The Technology of Using Liquid Glass Mixture Waste for Reducing the Harmful Environmental Impact

    No full text
    The spent liquid glass mixture, which is widely used in foundries as a binder after knocking out of moldings, contains pieces of different sizes and strengths, and there is a strong silicate film on the sand grains themselves. The proposed regeneration plants, which provide for the removal of the silicate film by scrubbing, have low productivity and lead to abrasion of the grains themselves. For this reason, the knocked-out mixture is taken to the dump. As a result of the study of the state of the spent liquid glass mixture in the dump, it was found that, in the spent mixture that had lain for 8–10 years, under prolonged exposure to atmospheric precipitation at plus and minus temperatures, part of the silicate film dissolves and almost all monolithic pieces are destroyed. Further use of hydraulic regeneration allows us to reduce the film thickness and thereby reduce the percentage of liquid glass from 5–5.5% to 0.8–1.2%. This made it possible to select the composition of the molding sand for an automatic line, using the AlpHaset-process, which consists of 22–29% of liquid glass mixture from a dump, 65–72% of liquid glass, 5.5% of liquid glass, and a hardener in the amount of 0.55%

    X-ray Diffraction Phase Analysis of Changes in the Lattice of Pervouralsk Quartzite upon Heating

    No full text
    At present, quartzite is widely used across many industries. The properties of quartzite significantly affect the technology used during the preparation of the raw materials as well as the technology used for manufacturing the final product, which may be intended for further operation at different temperatures. The purpose of the study was to create a scheme for the transformation of quartzite that would describe the changes in the parameters of its lattice parameter upon heating and would offer guidance regarding the drying technology and technology required to obtain tridymite. A Bruker D8 Advance diffractometer was used to study changes in the phase composition of quartzite at the temperatures of 200, 400, 600, 879, 1000, 1200, 1470, and 1550 °C. A detailed scheme of transformations of PKMVI-1 quartzite with a SiO2 content of at least 97.5% at normal pressure was proposed for crystalline modifications formed during its heating. As a result of this research, the changes in the parameters of the lattice parameter—such as the average interplanar distance davg, the volume of the unit cell Vavg, the density of the unit cell Davg, and the molecular weight Mavg—were established

    Increasing the Efficiency of Foundry Production by Changing the Technology of Pretreatment with Quartzite

    No full text
    The efficiency of the production of foundry products depends on the reliable operation of the melting furnace including, therefore, the durability of its lining. The most common material adopted for the production of an acid furnace crucible lining is quartzite, in which during the pretreatment (heating to 800 °C followed by holding), a tridymite phase appears that maintains a constant volume at 840–1470 °C for a long time and provides high lining durability of 300–350 melts, but only when using melting temperature regimes not exceeding 1500 °C. However, the absence of iron scrap leads to the smelting of synthetic iron from only one steel scrap using higher melting temperatures (1550–1570 °C), which sharply reduces the lifetime of the lining to 220 melts. This work is devoted to research aimed at establishing technology for the pretreatment with the original quartzite, which ensures the formation of a phase state that successfully withstands elevated temperatures for a long time. The studies were carried out using a Bruker D8 ADVANCE diffractometer and a Shimadzu XRF-1800 X-ray wave-dispersive spectrometer. The work consisted of drying samples of the original quartzite at temperatures of 200 and 800 °C with subsequent exposure to temperatures of 200, 400, 600, 870, 1000, 1200, 1470 and 1550 °C. As a result, the conditions for pretreatment of quartzite were established, during which during its further use, a cristobalite phase can be obtained, which makes it possible manufacture a high-temperature lining that ensures its high durability. The introduction of this technology will ensure the efficiency of the production of foundry products for enterprises operating induction crucible furnaces at industrial frequency

    X-ray Diffraction Phase Analysis of Changes in the Lattice of Pervouralsk Quartzite upon Heating

    No full text
    At present, quartzite is widely used across many industries. The properties of quartzite significantly affect the technology used during the preparation of the raw materials as well as the technology used for manufacturing the final product, which may be intended for further operation at different temperatures. The purpose of the study was to create a scheme for the transformation of quartzite that would describe the changes in the parameters of its lattice parameter upon heating and would offer guidance regarding the drying technology and technology required to obtain tridymite. A Bruker D8 Advance diffractometer was used to study changes in the phase composition of quartzite at the temperatures of 200, 400, 600, 879, 1000, 1200, 1470, and 1550 °C. A detailed scheme of transformations of PKMVI-1 quartzite with a SiO2 content of at least 97.5% at normal pressure was proposed for crystalline modifications formed during its heating. As a result of this research, the changes in the parameters of the lattice parameter—such as the average interplanar distance davg, the volume of the unit cell Vavg, the density of the unit cell Davg, and the molecular weight Mavg—were established

    Investigation of the Solid-Phase Joint of VT-14 Titanium Alloy with 12KH18N10T Stainless Steel Obtained by Diffusion Welding through Intermediate Layers

    No full text
    This paper describes the technological process of manufacturing bimetallic billets, which are capable of operating at high pressures, high temperatures, and in corrosive environments, from VT-14 titanium alloy and 12KH18N10T stainless steel. To obtain a joint with a strength of at least 350 MPa, the diffusion welding method was used, which makes it possible to obtain equal-strength joints using dissimilar materials. The connection of VT-14 titanium alloy with 12KH18N10T stainless steel after obtaining bimetallic billets with the desired properties was investigated. We studied the welded VT-14 and 12KH18N10T joint obtained by diffusion welding through intermediate spacers of niobium Nb (NbStrip-1) and copper Cu (M1). On the basis of our investigations, the optimum welding modes are as follows: welding temperature: 1137 K; welding pressure: 18 MPa; welding time: 1200 s. Mechanical tests, tightness tests, and metallographic, factographic, and micro-X-ray structural studies were carried out, the results of which indicate the effectiveness of the proposed approach

    Influence of Moisture in Quartzite on the Lining Properties and Efficiency of Industrial-Frequency Induction Crucible Furnaces

    No full text
    The main purpose of industrial frequency induction crucible smelters (IGM) is the smelting of synthetic cast iron, using metal filling scrap in the amount of 30–35%, at a temperature not exceeding 1450 OZ C. The basis of the lining used is quartzite, which undergoes polymorphic transformations in the pre-treatment process to form tridimite. The efficiency of using these furnaces is significantly increased when using a metal casting consisting of a single steel scrap, but for this purpose, the melting mode has to be raised to 1550–1600 °C, which will reduce the resistance of the lining. The structural transformation of quartzite is strongly influenced by the state of water in it. In this work, studies have been carried out for changes in the water condition in the quartzite of the brand PCMVI-3 under the action of temperatures of 200–1550 °C. The Shimadzu XRF-1800 spectrometer established the actual chemical composition of the investigated quartzite and found that the amount of impurities in it is 0.66%. A derivative study of STA 449 F1 Jupiter found two endothermic effects. The first, at 170 °C, relates to the loss of adsorbed water. The second, at a temperature of 570 °C, passes without the loss of mass of the sample, and it is accompanied by the beginning of the process of the destruction of point defects in the form of Al-OH groupings. From a temperature of 620–630 °C, no mass changes associated with water removal were detected. The BRUKER D8 ADVANCE diffractometer investigated phase changes during the removal of moisture from the quartzite at temperatures of 200 and 800 °C and subsequent cooling and then during the heating used to sinter the lining. As a result, it has been established that the sheet in which the quartzite contains only chemically bound moisture, after sintering, turns into cristobalite and provides a more stable exposure to sudden temperature changes. This makes it possible to use up to 90% of the steel scrap in metal filling, which increases the efficiency of the melting furnace and the production of castings in general
    corecore