5,561 research outputs found

    Poincar\'e profiles of groups and spaces

    Get PDF
    We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar\'{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim\'{a}r. In this paper we focus on properties of the Poincar\'{e} profiles of groups with polynomial growth, and of hyperbolic spaces, where we deduce a connection between these profiles and conformal dimension. As applications, we use these invariants to show the non-existence of coarse embeddings in a variety of examples.Comment: 55 pages. To appear in Revista Matem\'atica Iberoamerican

    Active Inter-cellular Forces in Collective Cell Motility

    Full text link
    The collective behaviour of confluent cell sheets is strongly influenced both by polar forces, arising through cytoskeletal propulsion and by active inter-cellular forces, which are mediated by interactions across cell-cell junctions. We use a phase-field model to explore the interplay between these two contributions and compare the dynamics of a cell sheet when the polarity of the cells aligns to (i) their main axis of elongation, (ii) their velocity, and (iii) when the polarity direction executes a persistent random walk.In all three cases, we observe a sharp transition from a jammed state (where cell rearrangements are strongly suppressed) to a liquid state (where the cells can move freely relative to each other) when either the polar or the inter-cellular forces are increased. In addition, for case (ii) only, we observe an additional dynamical state, flocking (solid or liquid), where the majority of the cells move in the same direction. The flocking state is seen for strong polar forces, but is destroyed as the strength of the inter-cellular activity is increased.Comment: 15 pages,22 figure

    A constitutive model for simple shear of dense frictional suspensions

    Full text link
    Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction ϕ\phi increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of ϕ\phi. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters (ϕ,σ~(\phi,\tilde{\sigma}, and μ)\mu), with σ~=σ/σ0\tilde{\sigma} = \sigma/\sigma_0 the dimensionless shear stress and μ\mu the coefficient of interparticle friction: the dimensional stress is σ\sigma, and σ0F0/a2\sigma_0 \propto F_0/ a^2, where F0F_0 is the magnitude of repulsive force at contact and aa is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \textquotedblleft jamming\textquotedblright\ points at volume fraction ϕJ0=ϕrcp\phi_{\rm J}^0 = \phi_{\rm rcp} (random close packing) for the low-stress lubricated state, and at ϕJ(μ)<ϕJ0\phi_{\rm J} (\mu) < \phi_{\rm J}^0 for any nonzero μ\mu in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.Comment: 12 pages, 10 figure
    corecore