46 research outputs found

    Semaine d'Etude Mathématiques et Entreprises 5 : Sélection de variables statistiquement représentatives pour la production électrique photovoltaïque

    Get PDF
    La production électrique des panneaux photovoltaïques dépend de nombreux paramètres météorologiques : rayonnement du soleil, présence ou absence de nuages, température, ... La problématique que nous a soumise l'entreprise RTE et à laquelle nous réfléchissons dans ce document est de sélectionner les variables les plus influentes sur cette production au moyen d'une étude statistique, et de proposer un modèle descriptif de cette production qui adhère le mieux possible à la réalité. Dans cet objectif, nous faisons dans un premier temps un tour d'horizon des modèles statistiques existants. Nous étudions ensuite un modèle additif pour analyser les données fournies par RTE et effectuer une première sélection de variables grâce au modèle GAM. Enfin, on reprend cette étude avec le modèle MARS dans l'objectif de pouvoir regrouper des variables entre elles pour pouvoir transformer notre modèle additif très restrictif en un modèle plus adapté à la situation considérée

    A new look at the temperature-dependent properties of the antiferroelectric model PbZrO3: an effective Hamiltonian study

    Full text link
    A novel atomistic effective Hamiltonian scheme, incorporating an original and simple bilinear energetic coupling, is developed and used to investigate the temperature dependent physical properties of the prototype antiferroelectric PbZrO3 (PZO) system. This scheme reproduces very well the known experimental hallmarks of the complex Pbam orthorhombic phase at low temperatures and the cubic paraelectric state of Pm 3m symmetry at high temperatures. Unexpectedly, it further predicts a novel intermediate state also of Pbam symmetry, but in which anti-phase oxygen octahedral tiltings have vanished with respect to the Pbam ground state. Interestingly, such new state exhibits a large dielectric response and thermal expansion that remarkably agree with previous experimental observations and the x-ray experiments we performed. We also conducted direct first-principles calculations at 0K which further support such low energy phase. Within this fresh framework, a re-examination of the properties of PZO is thus called for.Comment: 21 pages, 4 figures. This paper is submitted to Physical Review

    Direct Visualization of Anti-Ferroelectric Switching Dynamics via Electrocaloric Imaging

    Get PDF
    The large electrocaloric coupling in PbZrO allows using high-speed infrared imaging for visualizing anti-ferroelectric switching dynamics via the associated temperature change. It is found that in ceramic samples of homogeneous temperature and thickness, switching is fast due to the generation of multiple nucleation sites, with devices responding in the millisecond range. By introducing gradients of thickness, however, it is possible to change the dynamics to propagation limited, whereby a single-phase boundary sweeps across the sample like a cold front, at a speed of ≈20 cm s. Additionally, introducing thermostatic temperature differences between two sides of the sample enables the simultaneous generation of a negative electrocaloric effect on one side and a positive one on the other, yielding a Janus-like electrocaloric response.The authors acknowledge financial support to ICN2, which is funded by the CERCA programme/Generalitat de Catalunya and by the Severo Ochoa programme of the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, Grant No. SEV-2017-0706). The authors also acknowledge the support of Plan Nacional (MINECO, Grant Nos. MAT2016-77100-C2-1-P and BES-2016-077392), as well as the Agencia Estatal de Investigacion (Grant No. PID2019-108573GB-C21). R.F. and E.D. thank the Luxembourg National Research Fund (FNR) for funding part of this research through the projects CAMELHEAT/C17/MS/11703691/Defay. This work was also supported in part by the Spanish Ministry of Science, Innovation and Universities under the HIPERCELLS project (RTI2018-098392-B-I00), the Regional Government of the Generalitat de Catalunya under Grant Nos. 2017 SGR 1384 and 2017 SGR 00579. This work was also supported by the National Science Centre, Poland, within the Project No. 2016/21/B/ST3/02242

    Origin of the Large Negative Electrocaloric Effect in Antiferroelectric PbZrO3

    Get PDF
    We have studied the electrocaloric response of the archetypal antiferroelectric PbZrO3 as a function of voltage and temperature in the vicinity of its antiferroelectric-paraelectric phase transition. Large electrocaloric effects of opposite signs, ranging from an electro-cooling of -3.5 K to an electro-heating of +5.5 K, were directly measured with an infrared camera. We show by calorimetric and electromechanical measurements that the large negative electrocaloric effect comes from an endothermic antiferroelectric-ferroelectric switching, in contrast to dipole destabilization of the antiparallel lattice, previously proposed as an explanation for the negative electrocaloric effect of antiferroelectrics.Comment: Article (17 pages) and supplemental material (12 pages) present in .pdf fil

    JDM treatment with rituximab Personal non-commercial use only

    Get PDF
    ABSTRACT. Objective. To evaluate the safety and efficacy of rituximab (RTX) in juvenile dermatomyositis (JDM) in off-trial patients. Methods. We conducted a multicenter prospective study of patients with JDM included in the French Autoimmunity and Rituximab (AIR) registry. Results. Nine patients with severe JDM were studied. The main indication for RTX treatment was severe and/or refractory muscle involvement (7 patients), severe calcinosis (1 patient), or severe chronic abdominal pain associated with abdominal lipomatosis (1 patient). RTX was associated with corticosteroids, immunosuppressive drugs, and plasma exchange therapy in 9/9, 5/9, and 2/9 patients, respectively. Mild infections of the calcinosis sites occurred in 2 patients and an infusion-related event in 1. Complete clinical response was achieved in 3/6 patients treated with RTX for muscle involvement. In these responders steroid therapy was stopped or tapered to < 15% of the baseline dosage, with no relapse, with a followup ranging from 1.3 to 3 years. Calcinosis did not improve in the 6 affected patients. Conclusion. This small series suggests that rituximab may be effective for treating muscle and skin involvement in a small subset of children with severe JDM, and that its safety profile was satisfactory. Further studies are needed to identify predictive factors of response to RTX in patients with sever

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Structures et propriétés d'un antiferroélectrique modèle : PbZrO3

    No full text
    Among functional materials, oxides with a perovskite structure exhibit a large variety of properties which make them an active material of choice in a wide range of advanced devices. Antiferroelectricity is one such property and is characterized at the atomic scale by an antiparallel pattern of electrical dipoles. Lead zirconate (PbZrO3) is considered as the archetype of antiferroelectric perovskites. Despite its discovery more than 80 years ago, the physics presiding over the relationship between its structure and its properties remain to be established. This thesis aims to study the structure of lead zirconate under various conditions (temperature, electric field, hydrostatic pressure), the electrical properties of its phases, as well as to propose models explaining their relationship. This study has a particular focus on the so-Called “intermediate” phase which exhibits ferroelectric properties. The knowledge acquired during this study enables the proposal of innovative devices based on antiferroelectrics.Parmi les matériaux fonctionnels, les oxydes à structure pérovskite présentent une très grande variété de propriétés, de très nombreux dispositifs avancés les utilisent donc comme éléments actifs. On compte au nombre de ces propriétés l'antiferroélectricité, caractérisée à l'échelle atomique par un agencement antiparallèle de dipôles électriques. Le zirconate de plomb, PbZrO3, est considéré comme l'archétype de l'antiferroélectrique à structure pérovskite. Malgré sa découverte il y a plus de 80 ans, la physique présidant sa relation structure-Propriété reste incomprise. Cette étude de doctorat vise donc à étudier la structure de PbZrO3 sous diverses sollicitations, notamment de température, champ électrique, et pression hydrostatique, les propriétés électriques de ses différentes phases ainsi qu'à proposer des modèles permettant d'expliquer leur relation. L'accent sera mis en particulier sur la phase dite “intermédiaire” et qui présente des propriétés ferroélectriques. La compréhension acquise au cours de cette étude permet de proposer des dispositifs innovants à base de matériau antiferroélectrique

    Structure and properties of a typical antiferroelectric material : PbZrO3

    No full text
    Parmi les matériaux fonctionnels, les oxydes à structure pérovskite présentent une très grande variété de propriétés, de très nombreux dispositifs avancés les utilisent donc comme éléments actifs. On compte au nombre de ces propriétés l'antiferroélectricité, caractérisée à l'échelle atomique par un agencement antiparallèle de dipôles électriques. Le zirconate de plomb, PbZrO3, est considéré comme l'archétype de l'antiferroélectrique à structure pérovskite. Malgré sa découverte il y a plus de 80 ans, la physique présidant sa relation structure-Propriété reste incomprise. Cette étude de doctorat vise donc à étudier la structure de PbZrO3 sous diverses sollicitations, notamment de température, champ électrique, et pression hydrostatique, les propriétés électriques de ses différentes phases ainsi qu'à proposer des modèles permettant d'expliquer leur relation. L'accent sera mis en particulier sur la phase dite “intermédiaire” et qui présente des propriétés ferroélectriques. La compréhension acquise au cours de cette étude permet de proposer des dispositifs innovants à base de matériau antiferroélectrique.Among functional materials, oxides with a perovskite structure exhibit a large variety of properties which make them an active material of choice in a wide range of advanced devices. Antiferroelectricity is one such property and is characterized at the atomic scale by an antiparallel pattern of electrical dipoles. Lead zirconate (PbZrO3) is considered as the archetype of antiferroelectric perovskites. Despite its discovery more than 80 years ago, the physics presiding over the relationship between its structure and its properties remain to be established. This thesis aims to study the structure of lead zirconate under various conditions (temperature, electric field, hydrostatic pressure), the electrical properties of its phases, as well as to propose models explaining their relationship. This study has a particular focus on the so-Called “intermediate” phase which exhibits ferroelectric properties. The knowledge acquired during this study enables the proposal of innovative devices based on antiferroelectrics

    Large heat flux in electrocaloric multilayer capacitors

    No full text
    International audienceMulti layer capacitors (MLCs) are considered the most promising refrigerant elements for the design and development of electrocaloric cooling devices. Recently, the heat transfer of these MLCs has been considered. However, the heat exchange with the surrounding environment has been poorly addressed. In this work, we measure by infrared thermography the temperature change versus time in four different heat exchange configurations. Depending on the configurations, Newtonian and non-Newtonian regimes with their corresponding Biot number are determined, providing useful thermal characteristics. Indeed, in the case of large area thermal pad contacts, heat transfer coefficients up to 3400 W centerdot m−2 centerdot K−1 were obtained, showing that the standard (non-optimised) MLCs already reach the needs for designing efficient prototypes. We also determined the ideal Brayton cooling power in case of thick wires contact that varied between 3.4 mW and 9.8 mW for operating frequencies varying from 0.25 Hz to 1 Hz. While only heat conduction was considered here, our work provides some design rules for improving heat exchanges in future devices
    corecore