7 research outputs found
Gut Microbiome and Inflammation: A Study of Diabetic Inflammasome-Knockout Mice
Aims. Diabetes is a proinflammatory state, evidenced by increased pattern recognition receptors and the inflammasome (NOD-like receptor family pyrin domain (NLRP)) complex. Recent reports have elucidated the role of the gut microbiome in diabetes, but there is limited data on the gut microbiome in NLRP-KO mice and its effect on diabetes-induced inflammation. Methods. Gut microbiome composition and biomarkers of inflammation (IL-18, serum amyloid A) were assessed in streptozotocin- (STZ-) induced diabetic mice on a NLRP3-knockout (KO) background versus wild-type diabetic mice. Results. SAA and IL-18 levels were significantly elevated in diabetic mice (STZ) compared to control (WT) mice, and there was a significant attenuation of inflammation in diabetic NLRP3-KO mice (NLRP3-KO STZ) compared to control mice (p<0.005). Principal coordinate analysis clearly separated controls, STZ, and NLRP3-KO STZ mice. Among the different phyla, there was a significant increase in the Firmicutesâ:âBacteroidetes ratio in the diabetic group compared to controls. When compared to the WT STZ group, the NLRP3-KO STZ group showed a significant decrease in the Firmicutesâ:âBacteroidetes ratio. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a crucial factor that could modify diabetes and complications
Fetuin-A is also an adipokine
Abstract Fetuin-A (FetA), which impairs insulin action is considered classically as a hepatokine. In patients with Metabolic Syndrome without the confounding of diabetes or cardiovascular diseases, we showed significant increases in both circulating and subcutaneous adipose tissue secreted Fet-A. Furthermore we showed in mice models increase mRNA and protein following a high fat diet and in a model of metabolic syndrome. This work was recently confirmed by another group of investigators. Hence we propose that Fet-A be considered also as an adipokine
Gut Microbiome and Inflammation: A Study of Diabetic Inflammasome-Knockout Mice
Aims. Diabetes is a proinflammatory state, evidenced by increased pattern recognition receptors and the inflammasome (NOD-like receptor family pyrin domain (NLRP)) complex. Recent reports have elucidated the role of the gut microbiome in diabetes, but there is limited data on the gut microbiome in NLRP-KO mice and its effect on diabetes-induced inflammation. Methods. Gut microbiome composition and biomarkers of inflammation (IL-18, serum amyloid A) were assessed in streptozotocin- (STZ-) induced diabetic mice on a NLRP3-knockout (KO) background versus wild-type diabetic mice. Results. SAA and IL-18 levels were significantly elevated in diabetic mice (STZ) compared to control (WT) mice, and there was a significant attenuation of inflammation in diabetic NLRP3-KO mice (NLRP3-KO STZ) compared to control mice (p<0.005). Principal coordinate analysis clearly separated controls, STZ, and NLRP3-KO STZ mice. Among the different phyla, there was a significant increase in the Firmicutesâ:âBacteroidetes ratio in the diabetic group compared to controls. When compared to the WT STZ group, the NLRP3-KO STZ group showed a significant decrease in the Firmicutesâ:âBacteroidetes ratio. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a crucial factor that could modify diabetes and complications