19 research outputs found

    Combinatorial Topology Of Multipartite Entangled States

    Get PDF
    With any state of a multipartite quantum system its separability polytope is associated. This is an algebro-topological object (non-trivial only for mixed states) which captures the localisation of entanglement of the state. Particular examples of separability polytopes for 3-partite systems are explicitly provided. It turns out that this characterisation of entanglement is associated with simulation of arbitrary unitary operations by 1- and 2-qubit gates. A topological description of how entanglement changes in course of such simulation is provided.Comment: 14 pages, LaTeX2e. Slightly revised version of the poster resented on the International Conference on Quantum Information, Oviedo, Spain, 13-18 July, 2002. To appear in the special issue of Journal of Modern Optic

    Husimi coordinates of multipartite separable states

    Full text link
    A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.Comment: 19 pages, 1 figure, LaTe

    How `hot' are mixed quantum states?

    Get PDF
    Given a mixed quantum state ρ\rho of a qudit, we consider any observable MM as a kind of `thermometer' in the following sense. Given a source which emits pure states with these or those distributions, we select such distributions that the appropriate average value of the observable MM is equal to the average TrMρM\rho of MM in the stare ρ\rho. Among those distributions we find the most typical one, namely, having the highest differential entropy. We call this distribution conditional Gibbs ensemble as it turns out to be a Gibbs distribution characterized by a temperature-like parameter β\beta. The expressions establishing the liaisons between the density operator ρ\rho and its temperature parameter β\beta are provided. Within this approach, the uniform mixed state has the highest `temperature', which tends to zero as the state in question approaches to a pure state.Comment: Contribution to Quantum 2006: III workshop ad memoriam of Carlo Novero: Advances in Foundations of Quantum Mechanics and Quantum Information with atoms and photons. 2-5 May 2006 - Turin, Ital

    Spacetime topology from the tomographic histories approach I: Non-relativistic Case

    Full text link
    The tomographic histories approach is presented. As an inverse problem, we recover in an operational way the effective topology of the extended configuration space of a system. This means that from a series of experiments we get a set of points corresponding to events. The difference between effective and actual topology is drawn. We deduce the topology of the extended configuration space of a non-relativistic system, using certain concepts from the consistent histories approach to Quantum Mechanics, such as the notion of a record. A few remarks about the case of a relativistic system, preparing the ground for a forthcoming paper sequel to this, are made in the end.Comment: 19 pages, slight chang in title and corrected typos in second version. To appear to a special proceedings issue (Glafka 2004) of the International Journal of Theoretical Physic

    Backpropagation training in adaptive quantum networks

    Full text link
    We introduce a robust, error-tolerant adaptive training algorithm for generalized learning paradigms in high-dimensional superposed quantum networks, or \emph{adaptive quantum networks}. The formalized procedure applies standard backpropagation training across a coherent ensemble of discrete topological configurations of individual neural networks, each of which is formally merged into appropriate linear superposition within a predefined, decoherence-free subspace. Quantum parallelism facilitates simultaneous training and revision of the system within this coherent state space, resulting in accelerated convergence to a stable network attractor under consequent iteration of the implemented backpropagation algorithm. Parallel evolution of linear superposed networks incorporating backpropagation training provides quantitative, numerical indications for optimization of both single-neuron activation functions and optimal reconfiguration of whole-network quantum structure.Comment: Talk presented at "Quantum Structures - 2008", Gdansk, Polan

    Spacetime topology from the tomographic histories approach: Part II

    Full text link
    As an inverse problem, we recover the topology of the effective spacetime that a system lies in, in an operational way. This means that from a series of experiments we get a set of points corresponding to events. This continues the previous work done by the authors. Here we use the existence of upper bound in the speed of transfer of matter and information to induce a partial order on the set of events. While the actual partial order is not known in our operational set up, the grouping of events to (unordered) subsets corresponding to possible histories, is given. From this we recover the partial order up to certain ambiguities that are then classified. Finally two different ways to recover the topology are sketched and their interpretation is discussed.Comment: 21 pages, slight change in title and certain minor corrections in this second version. To apear in IJT
    corecore