473 research outputs found

    Manipulation of Single Neutral Atoms in Optical Lattices

    Full text link
    We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10−410^{-4} with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices.Comment: 5 pages, 3 figure

    Deeply subrecoil two-dimensional Raman cooling

    Full text link
    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold Cesium atoms down to an RMS velocity spread of 0.39(5) recoil velocity, corresponding to an effective temperature of 30 nK (0.15 T_rec). This technique can be useful to improve cold atom atomic clocks, and is particularly relevant for clocks in microgravity.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
    • 

    corecore