1,884 research outputs found
Extending the impulse response in order to reduce errors due to impulse noise and signal fading
A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel
The texture and taste of food in the brain
Oral texture is represented in the brain areas that represent taste, including the primary taste cortex, the orbitofrontal cortex, and the amygdala. Some neurons represent viscosity, and their responses correlate with the subjective thickness of a food. Other neurons represent fat in the mouth, and represent it by its texture not by its chemical composition, in that they also respond to paraffin oil and silicone in the mouth. The discovery has been made that these fat-responsive neurons encode the coefficient of sliding friction and not viscosity, and this opens the way for the development of new foods with the pleasant mouth feel of fat and with health-promoting designed nutritional properties. A few other neurons respond to free fatty acids (such as linoleic acid), do not respond to fat in the mouth, and may contribute to some 'off' tastes in the mouth. Some other neurons code for astringency. Others neurons respond to other aspects of texture such as the crisp fresh texture of a slice of apple vs the same apple after blending. Different neurons respond to different combinations of these texture properties, oral temperature, taste, and in the orbitofrontal cortex to olfactory and visual properties of food. In the orbitofrontal cortex, the pleasantness and reward value of the food is represented, but the primary taste cortex represents taste and texture independently of value. These discoveries were made in macaques that have similar cortical brain areas for taste and texture processing as humans, and complementary human functional neuroimaging studies are described. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.
Perceived thickness and creaminess modulates the short-term satiating effects of high protein drinks
Previous research suggests that increasing beverage protein content enhances subsequent satiety, but whether this effect is entirely attributable to post-ingestive effects of protein or is partly caused by the distinct sensory characteristics imparted by the presence of protein remains unclear. To try and discriminate nutritive from sensory effects of added protein, we contrasted effects of three higher energy (c. 1.2MJ) and one lower energy (LE: 0.35MJ) drink preloads on subsequent appetite and lunch intake. Two higher energy drinks had 44% of energy from protein, one with the sensory characteristics of a juice drink (HP-) and the second thicker and more creamy (HP+). The high-carbohydrate preload (HC+) was matched for thickness and creaminess to the HP+ drink. Participants (healthy male volunteers, n=26) consumed significantly less at lunch after the HP+ (566g) and HC+ (572g) than after HP- (623g) and LE (668g) drinks, although the compensation for drink energy accounted for only 50% of extra energy at best. Appetite ratings indicated that participants felt significantly less hungry and more full immediately before lunch in HP+ and HC+ compared to LE, with HP- intermediate. The finding that protein generated stronger satiety in the context of a thicker creamier drink (HP+ but not HP-), and that an isoenergetic carbohydrate drink (HC+) matched in thickness and creaminess to the HP+ drink generated the same pattern of satiety as HP+ both suggest an important role for these sensory cues in the development of protein-based satiety
Representational capacity of a set of independent neurons
The capacity with which a system of independent neuron-like units represents
a given set of stimuli is studied by calculating the mutual information between
the stimuli and the neural responses. Both discrete noiseless and continuous
noisy neurons are analyzed. In both cases, the information grows monotonically
with the number of neurons considered. Under the assumption that neurons are
independent, the mutual information rises linearly from zero, and approaches
exponentially its maximum value. We find the dependence of the initial slope on
the number of stimuli and on the sparseness of the representation.Comment: 19 pages, 6 figures, Phys. Rev. E, vol 63, 11910 - 11924 (2000
The Relative Attenuation of Self-stimulation, Eating and Drinking Produced by Dopamine-Receptor Blockade
Spiroperidol, which blocks dopamine (DA) receptors, attenuated self-stimulation of the nucleus accumbens, septal area, hippocampus, anterior hypothalamus and ventral tegmental area. Dopamine is thus involved in self-stimulation of many sites (in addition to the lateral hypothalamus). The attenuation was not a simple motor impairment of the speed of bar-pressing in that the nucleus accumbens and septal self-stimulation rates were lower than those in treated animals self-stimulating at other sites (Experiment 1). Feeding was partly attenuated, and drinking was much less attenuated by the spiroperidol. Since the rats bar-pressed for brain- stimulation reward, chewed pellets to eat, and licked a tube to drink, dopamine-receptor blockade may attenuate complex motor responses most. Alternatively, the blockade could affect brain- stimulation reward more than the controls of eating, and these latter more than the controls of drinking (Experiment 2). In Experiment 3, feeding and drinking were equally and severely attenuated when rats had to bar-press to obtain food or water. The attenuation was to a level similar to that found for self-stimulation. These experiments suggest that dopamine receptor blockade impairs eating, drinking and self-stimulation by interfering with complex motor responses
Bump formation in a binary attractor neural network
This paper investigates the conditions for the formation of local bumps in
the activity of binary attractor neural networks with spatially dependent
connectivity. We show that these formations are observed when asymmetry between
the activity during the retrieval and learning is imposed. Analytical
approximation for the order parameters is derived. The corresponding phase
diagram shows a relatively large and stable region, where this effect is
observed, although the critical storage and the information capacities
drastically decrease inside that region. We demonstrate that the stability of
the network, when starting from the bump formation, is larger than the
stability when starting even from the whole pattern. Finally, we show a very
good agreement between the analytical results and the simulations performed for
different topologies of the network.Comment: about 14 page
Stability Analysis of Asynchronous States in Neuronal Networks with Conductance-Based Inhibition
Oscillations in networks of inhibitory interneurons have been reported at various sites of the brain and are thought to play a fundamental role in neuronal processing. This Letter provides a self-contained analytical framework that allows numerically efficient calculations of the population activity of a network of conductance-based integrate-and-fire neurons that are coupled through inhibitory synapses. Based on a normalization equation this Letter introduces a novel stability criterion for a network state of asynchronous activity and discusses its perturbations. The analysis shows that, although often neglected, the reversal potential of synaptic inhibition has a strong influence on the stability as well as the frequency of network oscillations
Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation
Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources
- …