38 research outputs found

    Generation of dendritic cells from human peripheral blood monocytes - comparison of different culture media

    Get PDF
    Culture medium or medium supplement is one of the factors responsible for dendritic cell (DC) generation, but little is known about the influence of various media on DC culture. In our study we generated DC from adherent monocytes of human peripheral blood in the presence of GM-CSF, IL-4 and TNF-α. The following culture media were used: RPMI 1640 supplemented with 2% human serum albumin; RPMI 1640 supplemented with 2% TCH serum replacement; X-VIVO 15 and Panserin 501. Flow cytometry analysis revealed that in all media cells were CD83+ and lost CD14. Interestingly, the use of Panserin and RPMI with albumin preferentially gave rise to CD1a+ DC, whereas in X-VIVO and RPMI with TCH we observed both CD1a+ and CD1a-. Our results showed that RPMI with TCH yielded the highest percentage of cells expressing both CD80 and CD86 molecules and, in contrast to other media, the higher percentage of CD86+ cells in comparison to CD80+ cells

    SCID mice model in vivo evaluation of autologous and allogeneic dendritic cells activity on B-cell chronic lymphocytic leukemia.

    Get PDF
    In the present study we investigated in vivo therapeutic potential of DCs vaccines in B-cell chronic lymphocytic leukemia (B-CLL). On the day 0 the SCID mice were intraperitoneally inoculated with peripheral blood mononuclear cells (PBMC) of B-CLL patients at a dose of 10-30 x 10(6) and left untreated (controls) or i.p. injected on the day 7 with 0.2 - 14.0 x 10(6) dendritic cells. DCs were generated in vitro from peripheral blood monocytes of B-CLL donors (autologous DCs) or healthy donors (allogeneic cells) and pulsed with B-CLL antigens. On the day 14, the effect of implanted cells interactions was evaluated by a counting of CD19+CD5+ human leukemic cells and human T cells in the peritoneal fluid of mice. We found, that mean numbers of CD19+CD5+ leukemic cells as well as human T cells were lowered in peritoneal fluid of mice treated with allogeneic APCs. However, we did not observe similar effects with autologous DCs

    Upper Respiratory Tract Colonization by Gram-Negative Rods in Patients with Chronic Lymphocytic Leukemia: Analysis of Risk Factors

    Get PDF
    The aim of the study was to assess the frequency and predisposing factors of colonization of upper respiratory tract by Gram-negative rods (GNRs) in chronic lymphocytic leukemia (CLL) patients. Antimicrobial susceptibility of the isolated strains was determined. A significantly higher frequency of GNR colonization in CLL patients was observed (36.7%) in comparison to healthy volunteers (8.3%). GNR isolates mainly belonged to the Enterobacteriaceae family. Three isolates of GNR demonstrating presence of AmpC β-lactamases and one ESBL-producing strain were obtained from CLL patients. GNR colonization rate was higher among CLL patients with lower level of IgG in serum (P = 0.017), with higher number of neutrophils (P = 0.039) or higher number of lymphocytes in serum (P = 0.053). The longer the time elapsed since diagnosis, the higher the frequency of GNR colonization observed. Multivariate analysis showed importance of the Rai stage, number, and type of infections as independent predictors of GNR colonization in CLL patients

    Dendritic cells based immunotherapy of patient with chondrosarcoma--case report.

    Get PDF
    We present a case report of patient with intracranial chondrosarcoma and attempt to use vaccination of dendritic cells as the salvage therapy. To our knowledge, this is the first case report of DCs vaccination in the head and neck chondrosarcoma. Immunotherapy with allogeneic DCs stimulated with tumor cell lysates in this case was demonstrated to be feasible, safe and well tolerated. Unfortunately we did not observe any clinical or immune response during vaccination. CD4+ and CD8+ regulatory cells could be responsible for ineffectiveness of immunotherapy

    Treatment of Graves’ disease with methimazole in children alters the proliferation of Treg cells and CD3+ T lymphocytes

    Get PDF
    Almost all cases of hyperthyroidism in children result from Graves’ disease (GD). Recent studies have confirmed a significant role of T regulatory cells (Tregs) in the development of autoimmune diseases. However, the interactions between T cell responses and Treg proliferation in GD are still poorly understood. The aim of this study was to assess the proliferation of Treg cells (Tregs) and CD3+ T lymphocytes isolated from 50 children with GD before and after treatment with the thyreostatic drug methimazole (MMI). The proliferation rates, measured by methyl-3H-thymidyne incorporation, of CD3+ cells and Tregs stimulated with mitogen phorbol 12-myristate 13-acetate (PMA) were compared with those of unstimulated cells. The proliferation rates of both PMA-stimulated and unstimulated CD3+ cells prior to treatment with MMI were significantly higher than after treatment. Simultaneously, the proliferation rates of both PMA-stimulated and unstimulated Tregs were significantly lower before MMI treatment. Moreover, we observed higher cell proliferation rates of unstimulated and PMA-stimulated Tregs before the initiation of MMI therapy and after treatment in patients who had no relapse of hyperthyroidism. There was a positive correlation between the CD3+ cells proliferation rate before MMI treatment and fT3, as well as fT4 concentration in peripheral blood. The proliferation rates of CD3+ T cells before and after MMI treatment positively correlated with the TSI index. Thus, children suffering from Graves’ disease presented lower Tregs proliferative potential compared with CD3+ T cells. Cocultures of CD3+ T cells and Tregs showed that Tregs were not capable of efficiently inhibiting the proliferation of CD3+ T cells in GD patients. Conclusions. MMI treatment reduced the proliferative activity of CD3+ T cells in pediatric GD patients and increased the proliferation rate of Tregs. We suggest that Treg cells that are partly dysfunctional in GD disease are probably suppressed by CD3+ T cells and that methimazole exerts some immunomodulatory effects. (Folia Histochemica et Cytobiologica 2014, Vol. 52, No. 1, 69–77

    Immunological Aspects of Acute and Recurrent Herpes Simplex Keratitis

    No full text
    Herpes simplex keratitis (HSK) belongs to the major causes of visual morbidity worldwide and available methods of treatment remain unsatisfactory. Primary infection occurs usually early in life and is often asymptomatic. Chronic visual impairment and visual loss are caused by corneal scaring, thinning, and vascularization connected with recurrent HSV infections. The pathogenesis of herpetic keratitis is complex and is still not fully understood. According to the current knowledge, corneal scarring and vascularization are the result of chronic inflammatory reaction against HSV antigens. In this review we discuss the role of innate and adaptive immunities in acute and recurrent HSV ocular infection and present the potential future targets for novel therapeutical options based on immune interventions
    corecore