40 research outputs found

    The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4(+)CD25(+ )T cells

    Get PDF
    It is now generally accepted that CD4(+)CD25(+ )T(reg )cells play a major role in the prevention of autoimmunity and pathological immune responses. Their involvement in the pathogenesis of chronic arthritis is controversial, however, and so we examined their role in experimental antigen-induced arthritis in mice. Depletion of CD25-expressing cells in immunized animals before arthritis induction led to increased cellular and humoral immune responses to the inducing antigen (methylated bovine serum albumin; mBSA) and autoantigens, and to an exacerbation of arthritis, as indicated by clinical (knee joint swelling) and histological scores. Transfer of CD4(+)CD25(+ )cells into immunized mice at the time of induction of antigen-induced arthritis decreased the severity of disease but was not able to cure established arthritis. No significant changes in mBSA-specific immune responses were detected. In vivo migration studies showed a preferential accumulation of CD4(+)CD25(+ )cells in the inflamed joint as compared with CD4(+)CD25(- )cells. These data imply a significant role for CD4(+)CD25(+ )T(reg )cells in the control of chronic arthritis. However, transferred T(reg )cells appear to be unable to counteract established acute or chronic inflammation. This is of considerable importance for the timing of T(reg )cell transfer in potential therapeutic applications

    Expression of cytokine mRNA and protein in joints and lymphoid organs during the course of rat antigen-induced arthritis

    Get PDF
    Cytokine expression was assessed during antigen-induced arthritis (AIA) in synovial membrane (SM), inguinal lymph node (LN), and spleen using competitive RT-PCR and sandwich ELISA. In the SM, early elevations of IL-1β and IL-6 mRNA (by 6 hours; 450- and 200-fold, respectively) correlated with the joint swelling; a 6-fold increase in tumor necrosis factor α (TNFα) was not significant. Not only IL-2 and IFN-γ (which increased 10,000-fold and 200-fold, respectively), but also IL-5 and IL-10, increased acutely (6 hours – day 1; 3-fold and 35-fold, respectively) in the SM. In general, the protein levels in the SM for IL-1β, IL-6, TNFα, IFN-γ, IL-4, and IL-10 (increase from 4-fold to 15-fold) matched the course of mRNA expression. In the inguinal LN, there were early mRNA elevations of IL-6 (a 2.5-fold increase by 6 hours, which correlated positively with the joint swelling) and IL-2 (4-fold by 6 hours), as well as later rises of IL-4 and IL-5 (2.5- and 4-fold, respectively, by day 3). No significant elevations of the corresponding proteins in this tissue were observed, except for IL-1β (by day 6) and IL-10 (by day 1). In the spleen, there were significant mRNA elevations at 6 hours of IL-1β (1.5-fold), IL-6 (4-fold; positively correlated with the joint swelling), IFN-γ (3-fold), and IL-2 (7- to 10-fold). IL-5 and IL-10 (2- and 3-fold, respectively) peaked from 6 hours to day 3 in the spleen. Increases of the corresponding proteins were significant in comparison with day 0 only in the case of IL-2 (day 6). By day 6 (transition to the chronic phase), the mRNA for cytokines declined to or below prearthritis levels in all the tissues studied except for IL-1β in the SM and IL-6 in the spleen. AIA is thus characterized by four phenomena: early synovial activation of macrophages, T helper (Th)1-like, and Th2-like cells; late, well-segregated Th2-like responses in the inguinal LN; late, overlapping Th1-like/Th2-like peaks in the spleen; and chronic elevation of synovial IL-1β mRNA and spleen IL-6 mRNA

    Intra-articular injections of high-molecular-weight hyaluronic acid have biphasic effects on joint inflammation and destruction in rat antigen-induced arthritis

    Get PDF
    To assess the potential use of hyaluronic acid (HA) as adjuvant therapy in rheumatoid arthritis, the anti-inflammatory and chondroprotective effects of HA were analysed in experimental rat antigen-induced arthritis (AIA). Lewis rats with AIA were subjected to short-term (days 1 and 8, n = 10) or long-term (days 1, 8, 15 and 22, n = 10) intra-articular treatment with microbially manufactured, high-molecular-weight HA (molecular weight, 1.7 × 10(6 )Da; 0.5 mg/dose). In both tests, 10 buffer-treated AIA rats served as arthritic controls and six healthy animals served as normal controls. Arthritis was monitored by weekly assessment of joint swelling and histological evaluation in the short-term test (day 8) and in the long-term test (day 29). Safranin O staining was employed to detect proteoglycan loss from the epiphyseal growth plate and the articular cartilage of the arthritic knee joint. Serum levels of IL-6, tumour necrosis factor alpha and glycosaminoglycans were measured by ELISA/kit systems (days 8 and 29). HA treatment did not significantly influence AIA in the short-term test (days 1 and 8) but did suppress early chronic AIA (day 15, P < 0.05); however, HA treatment tended to aggravate chronic AIA in the long-term test (day 29). HA completely prevented proteoglycan loss from the epiphyseal growth plate and articular cartilage on day 8, but induced proteoglycan loss from the epiphyseal growth plate on day 29. Similarly, HA inhibited the histological signs of acute inflammation and cartilage damage in the short-term test, but augmented acute and chronic inflammation as well as cartilage damage in the long-term test. Serum levels of IL-6, tumour necrosis factor alpha, and glycosaminoglycans were not influenced by HA. Local therapeutic effects of HA in AIA are clearly biphasic, with inhibition of inflammation and cartilage damage in the early chronic phase but with promotion of joint swelling, inflammation and cartilage damage in the late chronic phase

    Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis

    Get PDF
    Introduction The objective of this study was to evaluate the efficacy of intravenous (i.v.) injection of liposomally encapsulated dexamethasone phosphate (DxM-P) in comparison to free DxM-P in rats with established adjuvant arthritis (AA). This study focused on polyethylene glycol (PEG)-free liposomes, to minimize known allergic reactions caused by neutral PEG-modified (PEG-ylated) liposomes. Methods Efficacy was assessed clinically and histologically using standard scores. Non-specific and specific immune parameters were monitored. Activation of peritoneal macrophages was analyzed via cytokine profiling. Pharmacokinetics/biodistribution of DxM in plasma, synovial membrane, spleen and liver were assessed via mass spectrometry. Results Liposomal DxM-P (3 × 1 mg/kg body weight; administered intravenously (i.v.) on Days 14, 15 and 16 of AA) suppressed established AA, including histological signs, erythrocyte sedimentation rate, white blood cell count, circulating anti-mycobacterial IgG, and production of interleukin-1beta (IL-1β) and IL-6 by peritoneal macrophages. The suppression was strong and long-lasting. The clinical effects of liposomal DxM-P were dose-dependent for dosages between 0.01 and 1.0 mg/kg. Single administration of 1 mg/kg liposomal DxM-P and 3 × 1 mg/kg of free DxM-P showed comparable effects consisting of a partial and transient suppression. Moreover, the effects of medium-dose liposomal DxM-P (3 × 0.1 mg/kg) were equal (in the short term) or superior (in the long term) to those of high-dose free DxM-P (3 × 1 mg/kg), suggesting a potential dose reduction by a factor between 3 and 10 by liposomal encapsulation. For at least 48 hours after the last injection, the liposomal drug achieved significantly higher levels in plasma, synovial membrane, spleen and liver than the free drug. Conclusions This new PEG-free formulation of macrophage-targeting liposomal DxM-P considerably reduces the dose and/or frequency required to treat AA, with a potential to enhance or prolong therapeutic efficacy and limit side-effects also in the therapy of rheumatoid arthritis. Depot and/or recirculation effects in plasma, inflamed joint, liver, and spleen may contribute to this superiority of liposomally encapsulated DxM-P
    corecore