12 research outputs found
Inhibitor affinity chromatography: Profiling the specific reactivity of the proteome with immobilized molecules
An inhibitor affinity chromatography (IAC) method has been developed for the analysis of inhibitor-protein interactions as a complementary approach to two-dimensional electrophoresis for functional proteomics studies. The procedure was developed utilizing a cyclin-dependent kinase 2 (Cdk2) inhibitor coupled to a polymeric resin and validated using a number of proteins interacting with the inhibitor with different specificities. Cdk2 and the other kinases bound and eluted from the resin in accordance with the relative in vitro potency of the inhibitor for each enzyme. Molecular interactions with the Cdk2 inhibitor were compared for HCT116 cancer cells versus rat pancreatic acinar cells. Proteins interacting with the ligand on the IAC matrix were identified by mass spectrometry. Isothermal calorimetry was used to confirm and quantitatively evaluate the binding affinity of some of the interacting proteins. Heat-shock protein (Hsp) 70 and Hsp27 were the strongest interactors with the inhibitor, displaying binding affinities comparable to those of Cdk2. These results support the use of IAC as a general method for the rapid identification and qualitative evaluation of the in vivo targets and potential side effects of a given drug
Potent and selective aurora inhibitors identified by the expansion of a novel scaffold for protein kinase inhibition
Potent and selective Aurora kinase inhibitors were identified from the combinatorial expansion of the 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole bi-cycle, a novel and versatile scaffold designed to target the ATP pocket of protein kinases. The most potent compound reported in this study had an IC 50 of 0.027 μM in the enzymatic assay for Aur-A inhibition and IC50s between 0.05 μM and 0.5 μM for the inhibition of proliferation of different tumor cell lines.</p
Identification ofN,1,4,4-Tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a Potent, Orally Available Cyclin Dependent Kinase Inhibitor
The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine−threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials
1,4,5,6-Tetrahydropyrrolo[3,4-c]pyrazoles:Identification of a potent aurora kinase inhibitor with a favorable antitumor kinase inhibition profile
The optimization of a series of 5-phenylacetyl 1,4,5,6-tetrahydropyrrolo[3, 4-c]pyrazole derivatives toward the inhibition of Aurora kinases led to the identification of compound 9d. This is a potent inhibitor of Aurora kinases that also shows low nanomolar potency against additional anticancer kinase targets. Based on its high antiproliferative activity on different cancer cell lines, favorable chemico-physical and pharmacokinetic properties, and high efficacy in in vivo tumor models, compound 9d was ultimately selected for further development.</p
Cdc7 kinase inhibitors:Pyrrolopyridinones as potential antitumor agents. 1. Synthesis and structure-activity relationships
Cdc7 kinase is an essential protein that promotes DNA replication in eukaryotic organisms. Genetic evidence indicates that Cdc7 inhibition can cause selective tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 small-molecule inhibitors for the treatment of cancers. In this paper, the synthesis and structure-activity relationships of 2-heteroaryl-pyrrolopyridinones, the first potent Cdc7 kinase inhibitors, are described. Starting from 2-pyridin-4-yl-1,5,6,7-tetrahydro-pyrrolo[3,2-c] pyridin-4-one, progress toward a simple scaffold, tailored for Cdc7 inhibition, is reported.</p
Thieno[3,2-c]pyrazoles: A novel class of Aurora inhibitors with favorable antitumor activity
A novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure–activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model
First Cdc7 kinase inhibitors:Pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery
Cdc7 kinase is a key regulator of the S-phase of the cell cycle, known to promote the activation of DNA replication origins in eukaryotic organisms. Cdc7 inhibition can cause tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 inhibitors for the treatment of cancer. In this paper, we conclude the structure-activity relationships study of the 2-heteroaryl-pyrrolopyridinone class of compounds that display potent inhibitory activity against Cdc7 kinase. Furthermore, we also describe the discovery of 89S,[(S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoro-ethyl)-1,5,6,7- tetrahydropyrrolo[3,2-c]pyridin- 4-one], as a potent ATP mimetic inhibitor of Cdc7. Compound 89S has a Ki value of 0.5 nM, inhibits cell proliferation of different tumor cell lines with an IC50 in the submicromolar range, and exhibits in vivo tumor growth inhibition of 68% in the A2780 xenograft model.</p