13 research outputs found

    Ractopamine at the Center of Decades-Long Scientific and Legal Disputes: A Lesson on Benefits, Safety Issues, and Conflicts

    Get PDF
    Ractopamine (RAC) is a synthetic phenethanolamine, β–adrenergic agonist used as a feed additive to develop leanness and increase feed conversion efficiency in different farm animals. While RAC has been authorized as a feed additive for pigs and cattle in a limited number of countries, a great majority of jurisdictions, including the European Union (EU), China, Russia, and Taiwan, have banned its use on safety grounds. RAC has been under long scientific and political discussion as a controversial antibiotic as a feed additive. Here, we will present significant information on RAC regarding its application, detection methods, conflicts, and legal divisions that play a major role in controversial deadlock and why this issue warrants the attention of scientists, agriculturists, environmentalists, and health advocates. In this review, we highlight the potential toxicities of RAC on aquatic animals to emphasize scientific evidence and reports on the potentially harmful effects of RAC on the aquatic environment and human health

    Performance Comparison of Five Methods Available in ImageJ for Bird Counting and Detection from Video Datasets

    No full text
    Bird monitoring is an important approach to studying the diversity and abundance of birds, especially during migration, as it can provide core data for bird conservation purposes. The previous methods for bird number estimation are largely based on manual counting, which suffers from low throughput and a high error rate. In this study, we aimed to provide an alternative bird-counting method from video datasets by using five available ImageJ methods: Particle Analyzer, Find Maxima, Watershed segmentation, TrackMate, and trainable WEKA segmentation. The numbers of birds and their XY coordinates were extracted from videos to conduct a side-by-side comparison with the manual counting results, and the three important criteria of the sensitivity, precision, and F1 score were calculated for the performance evaluation. From the tests, which we conducted for four different cases with different bird numbers or flying patterns, TrackMate had the best overall performance for counting birds and pinpointing their locations, followed by Particle Analyzer, Find Maxima, WEKA, and lastly, Watershed, which showed low precision in most of the cases. In summary, five ImageJ-based counting methods were compared in this study, and we validated that TrackMate obtains the best performance for bird counting and detection

    Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics

    No full text
    Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish

    Performance Comparison of Five Methods for Tetrahymena Number Counting on the ImageJ Platform: Assessing the Built-in Tool and Machine-Learning-Based Extension

    No full text
    Previous methods to measure protozoan numbers mostly rely on manual counting, which suffers from high variation and poor efficiency. Although advanced counting devices are available, the specialized and usually expensive machinery precludes their prevalent utilization in the regular laboratory routine. In this study, we established the ImageJ-based workflow to quantify ciliate numbers in a high-throughput manner. We conducted Tetrahymena number measurement using five different methods: particle analyzer method (PAM), find maxima method (FMM), trainable WEKA segmentation method (TWS), watershed segmentation method (WSM) and StarDist method (SDM), and compared their results with the data obtained from the manual counting. Among the five methods tested, all of them could yield decent results, but the deep-learning-based SDM displayed the best performance for Tetrahymena cell counting. The optimized methods reported in this paper provide scientists with a convenient tool to perform cell counting for Tetrahymena ecotoxicity assessment

    Establishing a High-Throughput Locomotion Tracking Method for Multiple Biological Assessments in Tetrahymena

    No full text
    Protozoa are eukaryotic, unicellular microorganisms that have an important ecological role, are easy to handle, and grow rapidly, which makes them suitable for ecotoxicity assessment. Previous methods for locomotion tracking in protozoa are largely based on software with the drawback of high cost and/or low operation throughput. This study aimed to develop an automated pipeline to measure the locomotion activity of the ciliated protozoan Tetrahymena thermophila using a machine learning-based software, TRex, to conduct tracking. Behavioral endpoints, including the total distance, velocity, burst movement, angular velocity, meandering, and rotation movement, were derived from the coordinates of individual cells. To validate the utility, we measured the locomotor activity in either the knockout mutant of the dynein subunit DYH7 or under starvation. Significant reduction of locomotion and alteration of behavior was detected in either the dynein mutant or in the starvation condition. We also analyzed how Tetrahymena locomotion was affected by the exposure to copper sulfate and showed that our method indeed can be used to conduct a toxicity assessment in a high-throughput manner. Finally, we performed a principal component analysis and hierarchy clustering to demonstrate that our analysis could potentially differentiate altered behaviors affected by different factors. Taken together, this study offers a robust methodology for Tetrahymena locomotion tracking in a high-throughput manner for the first time

    Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number

    No full text
    Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos

    Measurement of Multiple Cardiac Performance Endpoints in Daphnia and Zebrafish by Kymograph

    No full text
    Cardiovascular disease (CVD) is the number one cause of death worldwide. This condition resulted in huge research on CVD increasing the need for animal models suitable for in vivo research. Daphnia and zebrafish are good animal models for cardiovascular research due to their relative body transparency and easy culture property. Several methods have been developed to conduct cardiac performance measurement in Daphnia and zebrafish. However, most of the methods are only able to obtain heartbeat rate. The other important cardiac endpoints like stroke volume, ejection fraction, fraction shortening, cardiac output, and heartbeat regularity must use other programs for measurement. To overcome this limitation, in this study, we successfully developed a one-stop ImageJ-based method using kymograph macros language that is able to obtain multiple cardiac performance endpoints simultaneously for the first time. To validate its utility, we incubated Daphnia magna at different ambient temperatures and exposed zebrafish with astemizole to detect the corresponding cardiac performance alterations. In summary, the kymograph method reported in this study provides a new, easy to use, and inexpensive one-stop method obtaining multiple cardiac performance endpoints with high accuracy and convenience

    Using DeepLabCut as a Real-Time and Markerless Tool for Cardiac Physiology Assessment in Zebrafish

    No full text
    DeepLabCut (DLC) is a deep learning-based tool initially invented for markerless pose estimation in mammals. In this study, we explored the possibility of adopting this tool for conducting markerless cardiac physiology assessment in an important aquatic toxicology model of zebrafish (Danio rerio). Initially, high-definition videography was applied to capture heartbeat information at a frame rate of 30 frames per second (fps). Next, 20 videos from different individuals were used to perform convolutional neural network training by labeling the heart chamber (ventricle) with eight landmarks. Using Residual Network (ResNet) 152, a neural network with 152 convolutional neural network layers with 500,000 iterations, we successfully obtained a trained model that can track the heart chamber in a real-time manner. Later, we validated DLC performance with the previously published ImageJ Time Series Analysis (TSA) and Kymograph (KYM) methods. We also evaluated DLC performance by challenging experimental animals with ethanol and ponatinib to induce cardiac abnormality and heartbeat irregularity. The results showed that DLC is more accurate than the TSA method in several parameters tested. The DLC-trained model also detected the ventricle of zebrafish embryos even in the occurrence of heart abnormalities, such as pericardial edema. We believe that this tool is beneficial for research studies, especially for cardiac physiology assessment in zebrafish embryos

    Physiological Effects of Neonicotinoid Insecticides on Non-Target Aquatic Animals—An Updated Review

    No full text
    In this paper, we review the effects of large-scale neonicotinoid contaminations in the aquatic environment on non-target aquatic invertebrate and vertebrate species. These aquatic species are the fauna widely exposed to environmental changes and chemical accumulation in bodies of water. Neonicotinoids are insecticides that target the nicotinic type acetylcholine receptors (nAChRs) in the central nervous systems (CNS) and are considered selective neurotoxins for insects. However, studies on their physiologic impacts and interactions with non-target species are limited. In researches dedicated to exploring physiologic and toxic outcomes of neonicotinoids, studies relating to the effects on vertebrate species represent a minority case compared to invertebrate species. For aquatic species, the known effects of neonicotinoids are described in the level of organismal, behavioral, genetic and physiologic toxicities. Toxicological studies were reported based on the environment of bodies of water, temperature, salinity and several other factors. There exists a knowledge gap on the relationship between toxicity outcomes to regulatory risk valuation. It has been a general observation among studies that neonicotinoid insecticides demonstrate significant toxicity to an extensive variety of invertebrates. Comprehensive analysis of data points to a generalization that field-realistic and laboratory exposures could result in different or non-comparable results in some cases. Aquatic invertebrates perform important roles in balancing a healthy ecosystem, thus rapid screening strategies are necessary to verify physiologic and toxicological impacts. So far, much of the studies describing field tests on non-target species are inadequate and in many cases, obsolete. Considering the current literature, this review addresses important information gaps relating to the impacts of neonicotinoids on the environment and spring forward policies, avoiding adverse biological and ecological effects on a range of non-target aquatic species which might further impair the whole of the aquatic ecological web

    Deep Learning-Based Automatic Duckweed Counting Using StarDist and Its Application on Measuring Growth Inhibition Potential of Rare Earth Elements as Contaminants of Emerging Concerns

    No full text
    In recent years, there have been efforts to utilize surface water as a power source, material, and food. However, these efforts are impeded due to the vast amounts of contaminants and emerging contaminants introduced by anthropogenic activities. Herbicides such as Glyphosate and Glufosinate are commonly known to contaminate surface water through agricultural industries. In contrast, some emerging contaminants, such as rare earth elements, have started to enter the surface water from the production and waste of electronic products. Duckweeds are angiosperms from the Lemnaceae family and have been used for toxicity tests in aquatic environments, mainly those from the genus Lemna, and have been approved by OECD. In this study, we used duckweed from the genus Wolffia, which is smaller and considered a good indicator of metal pollutants in the aquatic environment. The growth rate of duckweed is the most common endpoint in observing pollutant toxicity. In order to observe and mark the fronds automatically, we used StarDist, a machine learning-based tool. StarDist is available as a plugin in ImageJ, simplifying and assisting the counting process. Python also helps arrange, manage, and calculate the inhibition percentage after duckweeds are exposed to contaminants. The toxicity test results showed Dysprosium to be the most toxic, with an IC50 value of 14.6 ppm, and Samarium as the least toxic, with an IC50 value of 279.4 ppm. In summary, we can provide a workflow for automatic frond counting using StarDist integrated with ImageJ and Python to simplify the detection, counting, data management, and calculation process
    corecore