4 research outputs found
Pore-space controlled hardening model in plasticity of porous materials: application to the analysis of indentation experiments
Based on a multi-scale approach comprising a multi-scale material model and a respective ïŹnite-element (FE) analysis tool, the indentation response of porous materials is examined in this paper. The considered material is assumed to consist of a homogeneous Drucker-Prager-type matrix-phase and spherical pores. Non-linear homogenization is employed to derive both a strength criterion and a hardening rule at the macroscopic scale without the need of any additional non-physical material parameters. Hereby, the underlying macroscopic hardening is exclusively controlled by the evolution of the porespace during loading. The material model is implemented in a FE program within the framework of elastoplasticity. The so-obtained analysis tool is applied to the analysis of indentation experiments commonly used for characterization and performance-based optimization of materials
Pore-space controlled hardening model in plasticity of porous materials: application to the analysis of indentation experiments
Based on a multi-scale approach comprising a multi-scale material model and a respective ïŹnite-element (FE) analysis tool, the indentation response of porous materials is examined in this paper. The considered material is assumed to consist of a homogeneous Drucker-Prager-type matrix-phase and spherical pores. Non-linear homogenization is employed to derive both a strength criterion and a hardening rule at the macroscopic scale without the need of any additional non-physical material parameters. Hereby, the underlying macroscopic hardening is exclusively controlled by the evolution of the porespace during loading. The material model is implemented in a FE program within the framework of elastoplasticity. The so-obtained analysis tool is applied to the analysis of indentation experiments commonly used for characterization and performance-based optimization of materials
Porous Talcum-Based Steatite Ceramics Fabricated by the Admixture of Organic Particles: Experimental Characterization and Effective Medium/Field Modeling of Thermo-Mechanical Properties
In this paper, an experimental campaign, as regards the thermo-mechanical properties (heat capacity, thermal conductivity, Youngâs modulus, and tensile (bending) strength) of talcum-based steatite ceramics with artificially introduced porosity, is presented. The latter has been created by adding various amounts of an organic pore-forming agent, almond shell granulate, prior to compaction and sintering of the green bodies. The so-obtained porosity-dependent material parameters have been represented by homogenization schemes from effective medium/effective field theory. As regards the latter, thermal conductivity and elastic properties are well described by the self-consistent estimate, with effective material properties scaling in a linear manner with porosity, with the latter in the range of 1.5 vol-%, representing the intrinsic porosity of the ceramic material, to 30 vol-% in this study. On the other hand, strength properties are, due to the localization of the failure mechanism in the quasi-brittle material, characterized by a higher-order power-law dependency on porosity