13 research outputs found
New insights on cavitating flows over a microscale backward-facing step
This study introduces the first experimental analysis of shear cavitation in a microscale backward-facing step (BFS) configuration. It explores shear layer cavitation under various flow conditions in a microfluidic device with a depth of 60 μm and a step height of 400 μm. The BFS configuration, with its unique characteristics of upstream turbulence and post-reattachment pressure recovery, provides a controlled environment for studying shear-induced cavitation without the complexities of other microfluidic geometries. Experiments were conducted across four flow patterns: inception, developing, shedding, and intense shedding, by varying upstream pressure and the Reynolds number. The study highlights key differences between microscale and macroscale shear cavitation, such as the dominant role of surface forces on nuclei distribution, vapor formation, and distinct timescales for phenomena like shedding and shockwave propagation. It is hypothesized that vortex strength in the shear layer plays a significant role in cavity shedding during upstream shockwave propagation. Results indicate that increased pressure notably elevates the mean thickness, length, and intensity within the shear layer. Instantaneous data analysis identified two vortex modes (shedding and wake modes) at the reattachment zone, which significantly affect cavitation shedding frequency and downstream penetration. The wake mode, characterized by stronger and lower-frequency vortices, transports cavities deeper into the channel compared to the shedding mode. Additionally, vortex strength, proportional to the Reynolds number, affects condensation caused by shockwaves. The study confirms that nuclei concentration peaks in the latter half of the shear layer during cavitation inception, aligning with the peak void fraction region
On the spatio-temporal dynamics of cavitating turbulent shear flow over a microscale backward-facing step: a numerical study
The influence of cavitation on the mean characteristics and unsteady behavior of turbulent separated flows was comprehensively investigated in this study over a microscale backward-facing configuration at the Reynolds number (ReD) of 7440. The computational approach took both compressibility and finite mass transfer (Thermodynamic non-equilibrium) into account, to accurately capture the effects of shock waves, as well as to capture baroclinic phenomena on vortex dynamics within the turbulent separated flow. The compressibility effects were handled by using appropriate equation of states for each phase and for the mixture. Phase-change was considered through a transport equation for the vapor volume fraction, allowing for finite mass transfer contributions. Additionally, a wall adaptive large eddy simulation (LES) approach was utilized for simulating turbulent structures and their effects. The findings reveal that vapor development diminishes the mean growth rate of the shear layer and delays its reattachment to a longer distance from the step. Moreover, analysis of Reynolds normal and shear stresses, as well as the root mean square (RMS) of pressure fluctuations, demonstrates that the formation and collapse of vapor packets significantly influence turbulence decay and production in the second half of the shear layer and reattachment. It was also observed that both mean pressure and pressure fluctuations increased in vicinity of the reattachment region when cavitation was present, which was attributed to the condensation and collapse events. Spectral analysis further indicates the emergence of two dominant low frequency modes, linked to the displacement of the reattachment point. In the presence of cavitation, the frequencies associated with dominant Power Spectral Densities (PSDs) were smaller than those in the absence of cavitation. Additionally, each of these low frequencies corresponded to a specific vapor transport mechanism within the Turbulent Separation Bubble (TSB). Furthermore, it is shown that cavitation leads to a significantly higher spectral energy of high frequency fluctuations within the reattachment region in comparison to the condition where cavitation is absent. This can be attributed to the frequent collapse of bubbles in this region. At the end, we employed Spectral Proper Orthogonal Decomposition (SPOD) for modal analysis. This method offers valuable insights into the coherent structures and associated frequencies that arise in both the presence and absence of cavitation, which provides a deeper understanding of the effect of cavitation on the coherent structures and their dynamics
On the effect of the respiratory droplet generation condition on COVID-19 transmission
Coronavirus (COVID-19) is a highly infectious viral disease and first appeared in Wuhan, China. Within a short time, it has become a global health issue. The sudden emergence of COVID-19 has been accompanied by numerous uncertainties about its impact in many perspectives. One of major challenges is understanding the underlying mechanisms in the spread of this outbreak. COVID-19 is spread similar to the majority of infectious diseases through transmission via relatively large respiratory droplets. The awareness of the dispersal of these droplets is crucial in not only improving methods for controlling the dispersion of COVID-19 droplets, but also in discovering fundamental mechanisms of its transmission. In this study, a numerical model is developed to study the motion of droplets expelled through the respiratory system. Based on the source of these droplets, different sizes of droplets such as large ones and aerosols, which behave differently in the environment, can be generated. In this regard, diverse sources of droplets, namely breathing, coughing, and sneezing, are considered in this analysis. Besides, the time for a single droplet to fall from a height of 1.8 m is also obtained. The results reveal that the traditional distances suggested by different sources for keeping the social distance are not enough, which is linked to different nature of the droplet generation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Cavitation inception and evolution in cavitation on a chip devices at low upstream pressures
The concept of "hydrodynamic cavitation on a chip"offers facile generation of cavitating flows in microdomains, which can be easily scaled up by arranging short microchannels (micro-orifices) in cascade formations. In this regard, microscale cavitation in an energy-efficient test rig has the potential of increasing utilization possibilities of cavitation in a wide range of applications such as liquid-phase exfoliation. In this study, a new experimental test rig was constructed to generate microscale hydrodynamic cavitation. This setup enables cavitation bubble generation at low upstream pressures through the control of the downstream pressure of the device. Particular attention was directed to the classification of flow patterns, scale effects, and cavitating flow evolutions with an in-depth categorization of underlying mechanisms such as Kelvin-Helmholtz instability. Cavitation inception appeared in the form of a single bubble. The appearance of different attached cavitating flow patterns within the microfluidic device was accompanied by new physics, which revealed that cavitation generation and development are affected by the existence of various fluid flow phenomena, particularly the jet flow. The outcome of this study makes hydrodynamic cavitation on a chip attractive for applications, where the cavitation effects are sought in the presence of multiphase fluid flows
Chemical effects in "hydrodynamic cavitation on a chip": the role of cavitating flow patterns
Amongst the advanced oxidation processes (AOPs), hydrodynamic cavitation (HC) has emerged as one of the most cost-efficient, simple and ecologically friendly approaches in the recent decade. This type of the cavitation, in contrast to its counterpart (acoustic cavitation), has a huge potential to upscale to the industrial levels. In the recent years, the micro-scale HC (HC on a chip concept) has exhibited favorable efficacy in terms of nucleation type, surface effects and flow pattern dominancy. In this study, the chemical effects of the HC on a chip concept are shown for the first time by considering the effects of the cavitating flow patterns. So, this is the first attempt to understand the effects of the inception and developed cavitating flow patterns on the chemical reactions during the bubble collapse in the micro-scale. In addition, a particular attention is paid to the chemical reaction effects before the cavitation bubble observation in this investigation. Our results indicated that the triiodide releasing amount was interestingly maximum before the inception occurred, especially at the first cycle. The released amount decreased at the inception and increased for the case of the developed twin cavities. We also showed that, comparing to our previous studies, the cavitation arrived at a relatively lower upstream pressure in the open loop cavitation test rig. Therefore, the outcome of this approach reveals the significance of the in-depth investigations of the complex and very transient nature of the cavitation at different flow patterns. Furthermore, this study implied that reactors benefitting HC on a chip concept will be environmentally friendly tools for producing products from the wastes and worthless materials in the near future
New nanofiber composition for multiscale bubble capture and separation
Bubble dynamics inside a liquid medium and its interactions with hydrophobic and hydrophilic surfaces are crucial for many industrial processes. Electrospinning of polymers has emerged as a promising fabrication technique capable of producing a wide variety of hydrophobic and hydrophilic polymer nanofibers and membranes at a low cost. Thus, knowledge about the bubble interactions on electrospun hydrophobic and hydrophilic nanofibers can be utilized for capturing; separating; and transporting macro-, micro-, and nanobubbles. In this study, poly(methyl methacrylate) (PMMA) and PMMA-poly(ethylene glycol) (PEG) electrospun nanofibers were fabricated to investigate gas bubble interactions with submerged nanofiber mats. To improve their durability, the nanofibers were reinforced with a plastic mesh. The ultimate tensile strengths of PMMA and PMMA-30%PEG nanofibers were measured as 0.35 and 0.30 MPa, respectively. With the use of reinforcement mesh, the mechanical properties of final membranes could be improved by a factor of 70. The gas permeability of the electrospun and reinforced nanofibers was also studied using the high-speed visualization technique and a homemade setup to investigate the effect of electrospun nanofibers on the bubble coalescence and size in addition to the frequency of released bubbles from the nanofiber mat. The diffusion rate of air bubbles in hydrophobic PMMA electrospun nanofibers was measured as 10 L/s for each square meter of the nanofiber. However, the PMMA-30%PEG mat was able to restrict the diffusion of gas bubbles through its pores owing to the van der Waals force between the water molecules and nanofiber surface as well as the high stability of the thin water layer. It has been shown that the hydrophobic electrospun nanofibers can capture and coalesce the rising gas bubbles and release them with predictable size and frequency. Consequently, the diameter of bubbles introduced to the hydrophobic PMMA membrane ranged between 2 and 25 mm, whereas the diameter of bubbles released from the hydrophobic electrospun nanofibers was measured as 8 ± 1 mm. The proposed mechanism and fabricated electrospun nanofibers can enhance the efficiency of various systems such as heat exchangers, liquid-gas separation filters, and direct air capture (DAC) systems
Removal of per- and polyfluoroalkyl substances (PFAS) from wastewater using the hydrodynamic cavitation on a chip concept
The elimination of micropollutants such as highly fluorinated substances, including per- and polyfluoroalkyl substances (PFAS), in wastewater treatment plants has been receiving growing attention due to the urgent need to minimize their adverse effects on natural water and associated ecosystems. Conventional treatment methods often fall short in effectively removing PFAS. In this study, the Hydrodynamic Cavitation on a Chip concept (HCOC) was utilized to degrade 11 common PFAS variants (PFAS11) for the first time in three different hydrodynamic cavitation reactor set-ups, each enhanced with surface modifications involving roughness elements. Stockholm municipal wastewater treated by a Membrane BioReactor (MBR) process was subjected to fully developed cavitating flow treatment using the three distinct microscale hydrodynamic cavitation (HC) reactors. The obtained results indicate that the chemical-free HCOC technique employed in this study has a significant potential in the degradation of nearly all investigated PFAS11 compounds at a notable rate of 36.1 % while the combination with MBR process can prevent blockage within the fluidic channels, enabling continuous operation with high throughput processing rates. Our proposed methodology demonstrated promising results in eliminating PFAS and could contribute to advancements in the use of microscale HC to treat micropollutants in wastewater. These findings could be a major leap in water treatment technologies addressing the global burden of resource-efficient micropollutant water treatment
Removal of per- and polyfluoroalkyl substances (PFAS) from wastewater using the hydrodynamic cavitation on a chip concept
The elimination of micropollutants such as highly fluorinated substances, including per- and polyfluoroalkyl substances (PFAS), in wastewater treatment plants has been receiving growing attention due to the urgent need to minimize their adverse effects on natural water and associated ecosystems. Conventional treatment methods often fall short in effectively removing PFAS. In this study, the Hydrodynamic Cavitation on a Chip concept (HCOC) was utilized to degrade 11 common PFAS variants (PFAS11) for the first time in three different hydrodynamic cavitation reactor set-ups, each enhanced with surface modifications involving roughness elements. Stockholm municipal wastewater treated by a Membrane BioReactor (MBR) process was subjected to fully developed cavitating flow treatment using the three distinct microscale hydrodynamic cavitation (HC) reactors. The obtained results indicate that the chemical-free HCOC technique employed in this study has a significant potential in the degradation of nearly all investigated PFAS11 compounds at a notable rate of 36.1 % while the combination with MBR process can prevent blockage within the fluidic channels, enabling continuous operation with high throughput processing rates. Our proposed methodology demonstrated promising results in eliminating PFAS and could contribute to advancements in the use of microscale HC to treat micropollutants in wastewater. These findings could be a major leap in water treatment technologies addressing the global burden of resource-efficient micropollutant water treatment
On cavitation inception and cavitating flow patterns in a multi-orifice microfluidic device with a functional surface
During the last decade, hydrodynamic cavitation has been implemented in various applications such as energy harvesting and biomedical applications. Facile hydrodynamic cavitation methods are required for fulfilling the requirements in these applications. In this study, a new generation microfluidic device containing eight parallel micro-orifices with a new design was fabricated and tested with the purpose of intensifying the cavitating flows and early cavitation inception. The roughness elements in the micro-orifices facilitated cavitation inception. This study presents a general perspective of occurrence of different cavitating flow patterns in microscale and addresses the ambiguities about the conditions for the formation of a specific flow pattern. Cavitation inception occurred with the appearance of small bubbles emerging from roughness elements at a rather low upstream pressure in the open loop experimental setup. A reduction in the cavitation number resulted in the formation of different flow patterns such as cavitation clouds, twin cavities, sheet cavities, and bubbly flows. Having several flow patterns with different intensities all together within a single microfluidic device is the main advantage of the proposed device over the state of the art microfluidic devices. Generation of flow patterns with various released energy levels makes this proposed device a unique multi-functional platform, which can be implemented to a lab on a chip platform for applications such as nanoparticle synthesis and wound healing
Detergent dissolution intensification via energy-efficient hydrodynamic cavitation reactors
In this study, we explored the potential of hydrodynamic cavitation (HC) for use in dissolution of liquid and powder detergents. For this, microfluidic and polyether ether ketone (PEEK) tube HC reactors with different configurations were employed, and the results from the reactors were compared with a magnetic stirrer, as well as a tergotometer. According to our results PEEK tube HC reactors present the best performance for dissolution of liquid and powder detergents. In the case of liquid detergent, for the same level of initial concentration and comparable final dissolution, the PEEK tube consumed 16.7 and 70% of the energy and time of a tergotometer and 16.7 and 14.8% of that of a magnetic stirrer, respectively. In the case of powder detergent, the PEEK tube used 12% less power than a tergotometer and 81.2% less power than a magnetic stirrer. Additionally, the time required to dissolve the detergent was reduced significantly from 1200 s in the tergotometer and 1800 s in the magnetic stirrer to just 50 s in the PEEK tube. These results suggest that HC could significantly improve the dissolution rate of liquid and powder detergents and energy consumption in washing machines