27 research outputs found

    Highly skewed current-phase relation in superconductor-topological insulator-superconductor Josephson junctions

    Full text link
    Three-dimensional topological insulators (TI's) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum computation. In superconductor-TI-superconductor Josephson junctions, the supercurrent versus the phase difference between the superconductors, referred to as the current-phase relation (CPR), reveals important information including the nature of the superconducting transport. Here, we study the induced superconductivity in gate-tunable Josephson junctions (JJs) made from topological insulator BiSbTeSe2 with superconducting Nb electrodes. We observe highly skewed (non-sinusoidal) CPR in these junctions. The critical current, or the magnitude of the CPR, increases with decreasing temperature down to the lowest accessible temperature (T ~ 20 mK), revealing the existence of low-energy modes in our junctions. The gate dependence shows that close to the Dirac point the CPR becomes less skewed, indicating the transport is more diffusive, most likely due to the presence of electron/hole puddles and charge inhomogeneity. Our experiments provide strong evidence that superconductivity is induced in the highly ballistic topological surface states (TSS) in our gate-tunable TI- based JJs. Furthermore, the measured CPR is in good agreement with the prediction of a model which calculates the phase dependent eigenstate energies in our system, considering the finite width of the electrodes as well as the TSS wave functions extending over the entire circumference of the TI

    Effect of strain on stripe phases in the Quantum Hall regime

    Get PDF
    Spontaneous breaking of rotational symmetry and preferential orientation of stripe phases in the quantum Hall regime has attracted considerable experimental and theoretical effort over the last decade. We demonstrate experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the quantum Hall regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along [110] or [1-10] directions. We suggest that shear strains due to internal electric fields in the growth direction are responsible for the observed orientation of CDW in pristine electron and hole samples.Comment: 10 pages, 3 figure

    Influence of disorder on antidot vortex Majorana states in 3D topological insulators

    Full text link
    Topological insulator/superconductor two-dimensional heterostructures are promising candidates for realizing topological superconductivity and Majorana modes. In these systems, a vortex pinned by a pre-fabricated antidot in the superconductor can host Majorana zero-energy modes (MZMs), which are exotic quasiparticles that may enable quantum information processing. However, a major challenge is to design devices that can manipulate the information encoded in these MZMs. One of the key factors is to create small and clean antidots, so that the MZMs, localized in the vortex core, have a large gap to other excitations. If the antidot is too large or too disordered, the level spacing for the subgap vortex states may become smaller than temperature. In this paper, we numerically investigate the effects of disorder, chemical potential, and antidot size on the subgap vortex spectrum, using a two-dimensional effective model of the topological insulator surface. Our model allows us to simulate large system sizes with vortices up to 1.8 μ\mum in diameter. We also compare our disorder model with the transport data from existing experiments. We find that the spectral gap can exhibit a non-monotonic behavior as a function of disorder strength, and that it can be tuned by applying a gate voltage.Comment: 10 pages, 6 figure
    corecore