51 research outputs found

    Evaluation of Antioxidant Activities, Oxidation Enzymes, and Quality of Nano-Coated Button Mushrooms (Agaricus Bisporus) during Storage

    No full text
    Agaricus Bisporus is an edible button mushroom that is highly perishable with an extremely short shelf-life at ambient temperature. This work aims to evaluate some antioxidant activities, oxidation enzymes, and determine postharvest qualities of nano-coated mushrooms with the combination of chitosan (CHN) component during storage at 4 °C for (0, 3, 6, 9, and 12 days). Silica/CHN Film strongly delayed the mushroom respiratory spike onset and blocked carbon dioxide passage from inside to the outside, while Titanium/CHN Film (0.035 mmol s−1 kg−1) established the lowest O2 production rate and thiobarbituric acid reactive substances production (6.21 nmol g−1). Silica/CHN Film was mainly effectual for the polyphenol contents (0.39 g kg−1) and antioxidant activities (78.14% and 71.09%) for DPPH and ABTS+ radical scavenging activities, respectively. The results reported that Silica/CHN Film induced the highest (catalase and ascorbate peroxidase) activities, while Titanium/CHN Film recorded the highest (peroxidase and superoxide dismutase) activities of antioxidant enzymes. Besides, Titanium/CHN Film preserved relatively lower contents of hydrogen peroxide (22.40 µmol g−1) and hydroxyl radical (0.16 µmol g−1). In a word, nano-materials used in coating films such as titanium or even silica with the combination of CHN can directly reduce the cell degradation, oxidation processes and enhance the harvested horticultural crops

    Microscopic Image Segmentation and Morphological Characterization of Novel Chitosan/Silica Nanoparticle/Nisin Films Using Antimicrobial Technique for Blueberry Preservation

    No full text
    In the current work, the characterization of novel chitosan/silica nanoparticle/nisin films with the addition of nisin as an antimicrobial technique for blueberry preservation during storage is investigated. Chitosan/Silica Nanoparticle/N (CH-SN-N) films presented a stable suspension as the surface loads (45.9 mV) and the distribution was considered broad (0.62). The result shows that the pH value was increased gradually with the addition of nisin to 4.12, while the turbidity was the highest at 0.39. The content of the insoluble matter and contact angle were the highest for the Chitosan/Silica Nanoparticle (CH-SN) film at 5.68%. The use of nano-materials in chitosan films decreased the material ductility, reduced the tensile strength and elongation-at-break of the membrane. The coated blueberries with Chitosan/Silica Nanoparticle/N films reported the lowest microbial contamination counts at 2.82 log CFU/g followed by Chitosan/Silica Nanoparticle at 3.73 and 3.58 log CFU/g for the aerobic bacteria, molds, and yeasts population, respectively. It was observed that (CH) film extracted 94 regions with an average size of 449.10, at the same time (CH-SN) film extracted 169 regions with an average size of 130.53. The (CH-SN-N) film presented the best result at 5.19%. It could be observed that the size of the total region of the fruit for the (CH) case was the smallest (1663 pixels), which implied that the fruit lost moisture content. As a conclusion, (CH-SN-N) film is recommended for blueberry preservation to prolong the shelf-life during storage

    Effect of Nano Silicon Dioxide Coating Films on the Quality Characteristics of Fresh-Cut Cantaloupe

    No full text
    The prime objective of the research was to explore the coating effects of chitosan and nano-silicon dioxide with nisin as an antimicrobial agent on physicochemical properties, microbiological stability, and sensorial quality changes during the storage at 4 °C. The combination of nano-material and chitosan in addition to nisin was effective for reducing the postharvest attributes of fresh-cut cantaloupes in addition to the highest score in sensory evaluation. Chitosan coating treatment enhanced the microbiological quality 2.50 log CFU/g and 1.87 log CFU/g for aerobic counts and mold/yeasts populations, respectively. In a word, the combination of chitosan/nano-silica/nisin treatment was the best condition for fresh-cut cantaloupe shelf life extension by maintaining color, vitamin C 22.29 mg/100g, peroxidase activity 8.06 U/min.g, and other microbiological tests up to storage time of 8 days

    Physical-Chemical Properties of Edible Film Made from Soybean Residue and Citric Acid

    No full text
    The effect of citric acid on the properties of soybean enzyme-assisted aqueous extraction processing (EAEP) residue edible film was studied. The washed soybean EAEP residue was produced by the process of EAEP. It was determined that the washed soybean EAEP residue is rich in fibers (76.10 ± 1.03%) and has lower oil and protein contents (7.74 ± 0.11% and 3.50 ± 0.20%, resp.). Edible films intended for food packaging have been produced from the washed EAEP residue combined with glycerol, different concentrations of citric acid (0%, 10%, 15%, 20%, 25%, and 30%), and sodium hypophosphite. The spectra have evidenced that the cross-linking reaction of citric acid and fibers has taken place in the residue. 30-CA films showed the highest tensile strength (17.52 MPa) and the lowest water vapor permeability (7.21 g·cm−1·s−1·Pa−1). Also, it indicated that citric acid can cross-link with the hydroxyls of polysaccharide and improve the compatibilization between the polymeric molecules to improve the intermolecular interaction between polysaccharide molecules, so that the water uptake is reduced. The smooth surface and better translucency of the films suggest that the EAEP residue films treated with citric acid are suitable for application in food packaging

    Nutritional Values of Onion Bulbs with Some Essential Structural Parameters for Packaging Process

    No full text
    Onions belong to the Allium genus that has been frequently used for human diet and the traditional medication due to the bioactive compounds. The main nutritional values, vitamins, and amino acid compositions of onion bulbs (Yellow, Red, Green, Leek, and Baby onions) with some essential structural parameters for the packaging process were investigated. Physical and structural parameters with frictions were applied for the packaging process. The results reported that moisture content was the main component of onion bulbs (88.65%). Besides, they were rich in proteins (9.22–13.21 g/100 g infresh weight) (FW). Results reported that Red and Yellow varieties established the largest vitamin C and carotenoids contents (45.07 mg/100 g−1 FW) and (1.44 µg/mL FW), respectively. The major amino acid was arginine which was highly found in Green variety (17.02 mg/g FW) and a relatively high amount of glutamic and aspartic acids as (9.88–14.89 mg/g FW) and (4.93–10.55 mg/g FW), respectively. Yellow variety established the largest width, thickness, surface area, aspect ratio, and sphericity. The highest static and kinetic frictions were established on steel (0.14–0.52) and (0.75–0.96), respectively. This study presents the nutritional evidence of onion varieties for the human diet besides the horticultural processing for packaging quality improvement

    Conformational and Functional Properties of Soybean Proteins Produced by Extrusion-Hydrolysis Approach

    No full text
    The conformational and functional changes of soybean protein after a hybrid extrusion-hydrolysis method were evaluated. Three extrusion temperatures (60, 80, and 100°C) were used prior to enzymatic hydrolysis. The hydrolysis degrees, molecular weight profiles, solubilities, surface hydrophobicities, sulphydryl contents, disulfide bound, water holding capacity, emulsion, and foam properties of the protein isolated from the enzyme-hydrolyzed extruded soybeans were analyzed. It shows that extrusion caused significant changes in the hydrophobicity, molecular weight distribution, solubility, surface hydrophobicity, emulsification activity, and stability of the protein. The increase of molecular weights could be attributed to the formation of protein aggregates during extrusion. Extrusion and enzymatic hydrolysis led to a sharp increase in the number of disulfide bonds with a decrease of the sulphydryl group. The water holding capacity and the solubility of protein increased with the increase of extrusion temperature and hydrolysis time. Extrusion improved the emulsifying activity but reduced the emulsifying stability of the recovered proteins. Extrusion improved the foam capacity but reduced the foam stability of the proteins. The data demonstrated that the extrusion-hydrolysis treatment significantly altered the conformational and functional properties of soybean protein, which may be further optimized for the development of new soy protein ingredient with desired functional properties

    Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation

    No full text
    Mushrooms have limited shelf-life and it can be prolonged if suitable conditions and treatments are effectively applied. In this study, nanocomposite material and antimicrobial agents with a combination of chitosan were used as novel packaging material for mushroom preservation. The microbiological analysis, physicochemical properties, headspace gas analysis, and polyphenol oxidase activity (PPO) during cold storage were investigated. As compared with control, coated mushrooms with chitosan (CHS), and nano-titanium dioxide CHSTiO2 thymol + tween-80 CHSTiO2/TT80 coating treatment showed significantly (p ≤ 0.05) lower respiration rate, microbial contaminations (4.27 log CFU/g), and (5.93 log CFU/g) for total yeast/mold and aerobic plate counts, respectively. The weight loss ratio was the lowest for CHSTiO2/TT80 (10.88% loss) followed by CHSTiO2 (11.76% loss). CHSTiO2/TT80 recorded a higher electrolyte leakage rate (25.84%) and acidity. While the lowest PPO activity was established for CHSTiO2 (17.09 U mg−1 Protein), while the lowest values for total soluble solid concentrations were reported for CHSTiO2/TT80 mushrooms (4.91%). These results indicated that CHSTiO2/TT80 coating treatment might delay the aging degree of white button mushrooms and be investigated as a novel packaging material for other food products in the future

    Investigating the Nano-Films Effect on Physical, Mechanical Properties, Chemical Changes, and Microbial Load Contamination of White Button Mushrooms during Storage

    No full text
    Nutrient-rich edible white button mushrooms were coated with Chitosan (1%), Chitosan/nano-silica, and Chitosan/nano-titanium and then stored at 4 °C to investigate the physical, mechanical properties, chemical changes, and microbial load contamination at an interval of 3 days up to a 12 days storage period. It was noticed that Chitosan/nano-titanium and Chitosan/nano-silica preserved the weight loss percentages as 11.80% and 12.69%, respectively. Treatment with Chitosan/nano-silica coating was found to have positive impacts on the overall color parameters. Both of the nano-coating films enhanced headspace gas compositions and firmness. Chitosan/nano-silica samples recorded the least electrolyte leakage value (24.44%), as low oxygen gas concentration can reduce the respiration rate, weight loss, and cap opening. Chitosan/nano-titanium treatment showed the lowest cap opening value (19.58%), PPO activity (16.98 mg−1 protein), and microbial load contamination (6.12 log CFU/g) at the end of the whole storage period, suggesting that nano-films are a promising preservation method for prolonging the white button mushroom’s shelf-life
    • …
    corecore